نتایج جستجو برای: independent domination

تعداد نتایج: 454185  

2007
JOCHEN HARANT ANJA PRUCHNEWSKI MARGIT VOIGT

A k-dominating set is a set D k V such that every vertex i 2 V nD k has at least k i neighbours in D k. The k-domination number k (G) of G is the cardinality of a smallest k-dominating set of G. For k 1 = ::: = kn = 1, k-domination corresponds to the usual concept of domination. Our approach yields an improvement of an upper bound for the domination number found then the notion of k-dominating ...

Journal: :Ars Comb. 2018
Polona Repolusk Janez Zerovnik

The existence of a constant time algorithm for solving different domination problems on the subclass of polygraphs, rotagraphs and fasciagraphs, is shown by means of path algebras. As these graphs include products (the Cartesian, strong, direct, lexicographic) of paths and cycles, we implement the algorithm to get formulas in the case of the domination numbers, the Roman domination numbers and ...

Journal: :transactions on combinatorics 2015
roushini leely pushpam sampath padmapriea

a roman dominating function (rdf) on a graph g = (v,e) is defined to be a function satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. a set s v is a restrained dominating set if every vertex not in s is adjacent to a vertex in s and to a vertex in . we define a restrained roman dominating function on a graph g = (v,e) to be ...

2016
Muhammad Akram Musavarah Sarwar

In this research study, we introduce the concept of bipolar neutrosophic graphs. We present the dominating and independent sets of bipolar neutrosophic graphs. We describe novel multiple criteria decision making methods based on bipolar neutrosophic sets and bipolar neutrosophic graphs. We also develop an algorithm for computing domination in bipolar neutrosophic graphs. Key-words: Bipolar neut...

Journal: :Discrete Applied Mathematics 2014
Michitaka Furuya Kenta Ozeki Akinari Sasaki

We let γ(G) and i(G) denote the domination number and the independent domination number ofG, respectively. Recently, Rad and Volkmann conjectured that i(G)/γ(G) ≤ ∆(G)/2 for every graph G, where ∆(G) is the maximum degree of G. In this note, we construct counterexamples of the conjecture for ∆(G) ≥ 6, and give a sharp upper bound of the ratio i(G)/γ(G) by using the maximum degree of G.

Journal: :Discussiones Mathematicae Graph Theory 2013
Mustapha Chellali Nader Jafari Rad

A Roman dominating function (RDF) on a graphG = (V,E) is a function f : V −→ {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of an RDF is the value f(V (G)) = ∑ u∈V (G) f(u). An RDF f in a graph G is independent if no two vertices assigned positive values are adjacent. The Roman domination number γR(G)...

2014
J. S. Sathya S. Vimala

Let be a simple undirected fuzzy graph. A subset S of V is called a dominating set in G if every vertex in V-S is effectively adjacent to at least one vertex in S. A dominating set S of V is said to be a Independent dominating set if no two vertex in S is adjacent. The independent domination number of a fuzzy graph is denoted by (G) which is the smallest cardinality of a independent dominating ...

Journal: :Central European Journal of Operations Research 2023

Abstract By suitably adjusting the tropical algebra technique we compute rainbow independent domination numbers of several infinite families graphs including Cartesian products $$C_n \Box P_m$$ C n ? P m </mm...

Journal: :Applicable Analysis and Discrete Mathematics 2016

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید