نتایج جستجو برای: kopkas d posets
تعداد نتایج: 579465 فیلتر نتایج به سال:
We explore the connection between polygon posets, which is a class of ranked posets with an edgelabeling which satisfies certain 'polygon properties', and the weak order of Coxeter groups. We show that every polygon poset is isomorphic to a join ideal in the weak order, and for Coxeter groups where no pair of generators have infinite order the converse is also true. The class of polygon posets ...
In this paper we present a bijection between composition matrices and (2+ 2)free posets. This bijection maps partition matrices to factorial posets, and induces a bijection from upper triangular matrices with non-negative entries having no rows or columns of zeros to unlabeled (2+ 2)-free posets. Chains in a (2+ 2)-free poset are shown to correspond to entries in the associated composition matr...
The involutory dimension, if it exists, of an involution poset P := (P,≤,′ ) is the minimum cardinality of a family of linear extensions of ≤, involutory with respect to ′, whose intersection is the ordering ≤. We show that the involutory dimension of an involution poset exists iff any pair of isotropic elements are orthogonal. Some characterizations of the involutory dimension of such posets a...
It has been an open problem to characterize posets P with the property that every order-preserving map on P has a fixed point. We give a characterization of such posets in terms of their retracts.
Recently, a simple proof of the hook length formula was given via the branching rule. In this paper, we extend the results to shifted tableaux. We give a bijective proof of the branching rule for the hook lengths for shifted tableaux; present variants of this rule, including weighted versions; and make the first tentative steps toward a bijective proof of the hook length formula for d-complete ...
For each word w in the Fibonacci lattices Fib(r) and Z (r) we partition the interval ^ 0; w] in Fib(r) into subposets called r-Boolean posets. In the case r = 1 those subposets are isomorphic to Boolean algebras. We also partition the interval ^ 0; w] in Z (r) into certain spanning trees of the r-Boolean posets. A bijection between those intervals is given in which each r-Boolean poset in Fib(r...
We show that there are n! matchings on 2n points without socalled left (neighbor) nestings. We also define a set of naturally labeled (2+2)free posets and show that there are n! such posets on n elements. Our work was inspired by Bousquet-Mélou, Claesson, Dukes and Kitaev [J. Combin. Theory Ser. A. 117 (2010) 884–909]. They gave bijections between four classes of combinatorial objects: matching...
All the posets/lattices considered here are finite with element 0. An element x of a poset satisfying certain properties is deletable if P − x is a poset satisfying the same properties. A class of posets is reducible if each poset of this class admits at least one deletable element. When restricted to lattices, a class of lattices is reducible if and only if one can go from any lattice in this ...
The interval number i(P) of a poset P is the smallest t such that P is a containment of sets that are unions of at most t real intervals. For the special poset Bn(k) consisting of the singletons and ksubsets of an n-element set, ordered by inclusion, i(Bn(k)) = min {k, n − k + 1} if |n/2 − k | ≥ n/2 − (n/2). For bipartite posets with n elements or n minimal elements, i(P) ≤ n lgn − lglgn + ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید