By using Riemann–Hilbert problem based techniques, we obtain the asymptotic expansion of lacunary Toeplitz determinants detN [ cla−mb [ f ] ] generated by holomorhpic symbols, where la = a (resp. mb = b) except for a finite subset of indices a = h1, . . . , hn (resp. b = t1, . . . , tr). In addition to the usual Szegö asymptotics, our answer involves a determinant of size n + r.