نتایج جستجو برای: lanczos bidiagonalization
تعداد نتایج: 1448 فیلتر نتایج به سال:
In this paper, we investigate the block Lanczos algorithm for solving large sparse symmetric linear systems with multiple right-hand sides, and show how to incorporate deeation to drop converged linear systems using a natural convergence criterion, and present an adaptive block Lanczos algorithm. We propose also a block version of Paige and Saun-ders' MINRES method for iterative solution of sym...
Lanczos vectors computed in nite precision arithmetic by the three-term recurrence tend to lose their mutual biorthogonality. One either accepts this loss and takes more steps or re-biorthogonalizes the Lanczos vectors at each step. For the symmetric case, there is a compromise approach. This compromise, known as maintaining semi-orthogonality, minimizes the cost of re-orthogonalization. This p...
This paper describes the software package Cucheb, a GPU implementation of the filtered Lanczos procedure for the solution of large sparse symmetric eigenvalue problems. The filtered Lanczos procedure uses a carefully chosen polynomial spectral transformation to accelerate convergence of the Lanczos method when computing eigenvalues within a desired interval. This method has proven particularly ...
We present simultaneous reduction algorithms for two (nonsymmetric) matrices A and B to upper Hessenberg and lower Hessenberg forms, respectively. One is through the simultaneous similarity reduction and the other is through a Lanczos– Arnoldi-type iteration. The algorithm that uses the Lanczos–Arnoldi-type iteration can be considered as a generalization of both the nonsymmetric Lanczos algorit...
The Arnoldi and Lanczos algorithms, which belong to the class of Krylov subspace methods, are increasingly used for model reduction of large scale systems. The standard versions of the algorithms tend to create reduced order models that poorly approximate low frequency dynamics. Rational Arnoldi and Lanczos algorithms produce reduced models that approximate dynamics at various frequencies. This...
We present a new, simple proof of existence for the Lanczos spinor potential in 3+1 dimensions that introduces a potential T ABCD = T (ABC)D of the Lanczos potential together with several generalizations to other index configurations and metric signatures. The potential T ABCD can also be used to express, in a concise way, the gauge freedom left in the Lanczos potential after the differential g...
In this paper we propose a fast structure-preserving algorithm for computing the singular value decomposition of quaternion matrices. The algorithm is based on the structurepreserving bidiagonalization of the real counterpart for quaternion matrices by applying orthogonal JRS-symplectic matrices. The algorithm is efficient and numerically stable. 2014 Elsevier Inc. All rights reserved.
The Lanczos method and its variants can be used to solve eeciently the rational interpolation problem. In this paper we present a suitable fast modiication of a general look-ahed version of the Lanczos process in order to deal with polynomials expressed in the Chebyshev orthogonal basis. The proposed approach is particularly suited for rational interpolation at Chebyshev points, that is, at the...
Using the work by Bampi and Caviglia, we write the Weyl-Lanczos equations as an exterior differential system. Using Janet-Riquier theory, we compute the Cartan characters for all spacetimes with a diagonal metric and for the plane wave spacetime since all spacetimes have a plane wave limit. We write the Lanczos wave equation as an exterior differential system and, with assistance from Janet-Riq...
We study numerical methods for solving nonlinear elliptic eigenvalue problems which contain folds and bifurcation points. First we present some convergence theory for the MINRES, a variant of the Lanczos method. A multigrid-Lanczos method is then proposed for tracking solution branches of associated discrete problems and detecting singular points along solution branches. The proposed algorithm ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید