نتایج جستجو برای: monoidal category

تعداد نتایج: 81558  

2014
R. BLUTE

Cartesian differential categories were introduced to provide an abstract axiomatization of categories of differentiable functions. The fundamental example is the category whose objects are Euclidean spaces and whose arrows are smooth maps. Monoidal differential categories provide the framework for categorical models of differential linear logic. The coKleisli category of any monoidal differenti...

2016
MOHAMMAD HASSANZADEH

In this paper we show that to a unital associative algebra object (resp. co-unital coassociative co-algebra object) of any abelian monoidal category (C,⊗) endowed with a symmetric 2-trace, i.e. an F ∈ Fun(C,Vec) satisfying some natural trace-like conditions, one can attach a cyclic (resp. cocyclic) module, and therefore speak of the (co)cyclic homology of the (co)algebra “with coefficients in F...

2005
ANDERS KOCK

Introduction. This note is concerned with "categories with internal horn and | and we shall use the terminology from the paper [2] by EIL~.NBERG and Kv.Imy. The result proved may be stated briefly as follows : a Y/--monad ("strong monad") on a symmetric monoidal closed category ~ carries two canonical structures as closed functor. I f these agree (in which case we call the monad commutative), t...

Journal: :Journal of Algebra and Its Applications 2012

2016
TYLER LAWSON

The invertibility hypothesis for a monoidal model category S asks that localizing an S-enriched category with respect to an equivalence results in an weakly equivalent enriched category. This is the most technical among the axioms for S to be an excellent model category in the sense of Lurie, who showed that the category CatS of S-enriched categories then has a model structure with characteriza...

2009
Éric Oliver Paquette Éric O. Paquette

In this chapter we survey some particular topics in category theory in a somewhat unconventional manner. Our main focus will be on monoidal categories, mostly symmetric ones, for which we propose a physical interpretation. Special attention is given to the category which has finite dimensional Hilbert spaces as objects, linear maps as morphisms, and the tensor product as its monoidal structure ...

2006
Ursula Martin Erik Arne Mathiesen Paulo Oliva

We present an abstraction of Hoare logic to traced symmetric monoidal categories, a very general framework for the theory of systems. We first identify a particular class of functors – which we call ‘verification functors’ – between traced symmetric monoidal categories and subcategories of Preord (the category of preordered sets and monotone mappings). We then give an abstract definition of Hoa...

2008
Tom Leinster

We present a definition of homotopy algebra for an operad, and explore its consequences. The paper should be accessible to topologists, category theorists, and anyone acquainted with operads. After a review of operads and monoidal categories, the definition of homotopy algebra is given. Specifically, suppose that M is a monoidal category in which it makes sense to talk about algebras for some o...

Journal: :Mathematical Structures in Computer Science 2011
Ichiro Hasuo Bart Jacobs

This paper contributes a feedback operator, in the form of a monoidal trace, to the theory of coalgebraic, state-based modelling of components. The feedback operator on components is shown to satisfy the trace axioms of Joyal, Street and Verity. We employ McCurdy’s tube diagrams, an extension of standard string diagrams for monoidal categories, for representing and manipulating component diagra...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید