1 Multiply transitive groups Theorem 1.1. Let Ω be a finite set and G ≤ Sym(Ω) be 2–transitive. Let N E G be a minimal normal subgroup. Then one of the following holds: (a) N is regular and elementary abelian. (b) N is primitive, simple and not abelian. Proof. First we show that N is unique. Suppose that M is another minimal normal subgroup of G, so N ∩M = {e} and therefore [N,M ] = {e}. Since ...