Consider a periodic, mean-reverting Ornstein–Uhlenbeck process \(X=\{X_t,t\ge 0\}\) of the form \(d X_{t}=\left( L(t)+\alpha X_{t}\right) d t+ dB^H_{t}, \quad t \ge 0\), where \(L(t)=\sum _{i=1}^{p}\mu _i\phi _i (t)\) is periodic parametric function, and \(\{B^H_t,t\ge fractional Brownian motion Hurst parameter \(\frac{1}{2}\le H<1\). In “ergodic” case \(\alpha <0\), estimation \((\mu _1,\ldots...