نتایج جستجو برای: riesz bases
تعداد نتایج: 69716 فیلتر نتایج به سال:
Discrete Gabor multipliers are composed of rank one operators. We shall prove, in the case of rank one projection operators, that the generating operators for such multipliers are either Riesz bases (exact frames) or not frames for their closed linear spans. The same dichotomy conclusion is valid for general rank one operators under mild and natural conditions. This is relevant since discrete G...
In this paper, we introduce the concept of dual frame of g-p-frame, and give the sufficient condition for a g-p-frame to have dual frames. Using operator theory and methods of functional analysis, we get some new properties of g-p-frame. In addition, we also characterize g-p-frame and g-q-Riesz bases by using analysis operator of g-p-Bessel sequence. c ©2017 All rights reserved.
In this article, a new biorthogonal multiwavelet basis on the interval with complementary homogeneous Dirichlet boundary conditions of second order is presented. This construction is based on the multiresolution analysis onR introduced in [DHJK00] which consists of cubic Hermite splines on the primal side. Numerical results are given for the Riesz constants and both a non-adaptive and an adapti...
In this paper we show that every g-frame for a Hilbert space H can be represented as a linear combination of two g-orthonormal bases if and only if it is a g-Riesz basis. We also show that every g-frame can be written as a sum of two tight g-frames with g-frame bounds one or a sum of a g-orthonormal basis and a g-Riesz basis for H . We further give necessary and sufficient conditions on g-Besse...
This paper generalizes the mixed extension principle in L2(R) of [50] to a pair of dual Sobolev spaces H(R) and H−s(Rd). In terms of masks for φ, ψ, . . . , ψ ∈ H(R) and φ̃, ψ̃, . . . , ψ̃ ∈ H−s(Rd), simple sufficient conditions are given to ensure that (X(φ;ψ, . . . , ψ), X−s(φ̃; ψ̃, . . . , ψ̃)) forms a pair of dual wavelet frames in (Hs(Rd),H−s(Rd)), where X(φ;ψ, . . . , ψ) := {φ(· − k) : k ∈ Zd} ...
We give a comprehensive introduction to a general modular frame construction in Hilbert C*-modules and to related linear operators on them. The Hilbert space situation appears as a special case. The reported investigations rely on the idea of geometric dilation to standard Hilbert C*-modules over unital C*-algebras that admit an orthonormal modular Riesz basis. Interrelations and applications t...
In this paper we investigate compactly supported wavelet bases for Sobolev spaces. Starting with a pair of compactly supported refinable functions φ and φ̃ in L2(R) satisfying a very mild condition, we provide a general principle for constructing a wavelet ψ such that the wavelets ψjk := 2j/2ψ(2j · − k) (j, k ∈ Z) form a Riesz basis for L2(R). If, in addition, φ lies in the Sobolev space H(R), t...
In this article we obtain families of frames for the space Bω of functions with band in [−ø, ø] by using the theory of shift-invariant spaces. Our results are based on the Gramian analysis of A. Ron and Z. Shen and a variant, due to Bownik, of their characterization of families of functions whose shifts form frames or Riesz bases. We give necessary and sufficient conditions for the translates o...
Let φ be a compactly supported refinable function in L2(R) such that the shifts of φ are stable and φ̂(2ξ) = â(ξ)φ̂(ξ) for a 2π-periodic trigonometric polynomial â. A wavelet function ψ can be derived from φ by ψ̂(2ξ) := e−iξ â(ξ + π)φ̂(ξ). If φ is an orthogonal refinable function, then it is well known that ψ generates an orthonormal wavelet basis in L2(R). Recently, it has been shown in the liter...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید