نتایج جستجو برای: semi real quaternionic involute evolute curve
تعداد نتایج: 784797 فیلتر نتایج به سال:
We define a quaternionic extension of the Szegedy walk on a graph and study its right spectral properties. The condition for the transition matrix of the quaternionic Szegedy walk on a graph to be quaternionic unitary is given. In order to derive the spectral mapping theorem for the quaternionic Szegedy walk, we derive a quaternionic extension of the determinant expression of the second weighte...
The equivalence relations of strict equivalence and congruence of real and complex matrix pencils with symmetries are compared, depending on whether the congruence matrices are real, complex, or quaternionic. The obtained results are applied to comparison of congruences of matrices, over the reals, the complexes, and the quaternions.
This paper presents a novel approach to continuously and robustly tracking critical (geometrically, perpendicular and/or extremal) distances from a moving plane point p ∈ R to a static parametrized piecewise rational curve γ(s) (s ∈ R). The approach is a combination of local marching, and the detection and computation of global topological change, both based on the differential properties of a ...
We prove that for a right linear bounded normal operator on a quaternionic Hilbert space (quaternionic bounded normal operator) the norm and the numerical radius are equal. As a consequence of this result we give a new proof of the known fact that a non zero quaternionic compact normal operator has a non zero right eigenvalue. Using this we give a new proof of the spectral theorem for quaternio...
A partial solution of the quaternionic contact Yamabe problem on the quaternionic sphere is given. It is shown that the torsion of the Biquard connection vanishes exactly when the trace-free part of the horizontal Ricci tensor of the Biquard connection is zero and this occurs precisely on 3-Sasakian manifolds. All conformal deformations sending the standard flat torsion-free quaternionic contac...
The purpose of this paper is to classify real hypersurfaces of quaternionic projective spaces whose Ricci tensor satisfy a pair of conditions on the maximal quaternionic distribution D? = Span fU1; U2; U3g. x0. Introduction Throughout this paper let us denote by M a connected real hypersurface in a quaternionic projective space QP, m=3, endowed with the metric g of constant quaternionic section...
We extend Jordan’s notion of principal angles to work for two subspaces of quaternionic space, and so have a method to analyze two orthogonal projections in the matrices over the real, complex or quaternionic field (or skew field). From this we derive an algorithm to turn almost commuting projections into commuting projections that minimizes the sum of the displacements of the two projections. ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید