نتایج جستجو برای: semi umbilic submanifolds
تعداد نتایج: 145525 فیلتر نتایج به سال:
Abstract We study the intersection between a smooth algebraic surface with an umbilic point and plane parallel close to tangent at umbilic. The problem has its origin in of isophote (equal illumination) curves 2-dimensional image. In particular, we circles which have exceptional tangency this curve: ordinary one osculating another; three points; 4-point vertex. centres having two points trace o...
2 Contact manifolds 4 2.1 Contact manifolds and their submanifolds . . . . . . . . . . . . . . 6 2.2 Gray stability and the Moser trick . . . . . . . . . . . . . . . . . . 13 2.3 Contact Hamiltonians . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 Darboux’s theorem and neighbourhood theorems . . . . . . . . . . 17 2.4.1 Darboux’s theorem . . . . . . . . . . . . . . . . . . . . . . . 17...
Involving the Ricci curvature and the squared mean curvature, we obtain basic inequalities for different kind of submaniforlds of a Sasakian space form tangent to the structure vector field of the ambient manifold. Contrary to already known results, we find a different necessary and sufficient condition for the equality for Ricci curvature of C-totally real submanifolds of a Sasakian space form...
We describe how the loop group maps corresponding to special submanifolds associated to integrable systems may be thought of as certain Grassmann submanifolds of infinite dimensional homogeneous spaces. In general, the associated families of special submanifolds are certain Grassmann submanifolds. An example is given from the recent article [2].
We study families of submanifolds in symmetric spaces of compact type arising as exponential images of s-orbits of variable radii. If the s-orbit is symmetric such submanifolds are the most important examples of adapted submanifolds, i.e. of submanifolds of symmetric spaces with curvature invariant tangent and normal spaces.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید