نتایج جستجو برای: silicon amorphous thin film
تعداد نتایج: 277414 فیلتر نتایج به سال:
I-Chun Cheng Alexis Kattamis Ke Long James C. Sturm Sigurd Wagner Abstract — Mechanical stress in hydrogenated amorphous-silicon (a-Si:H) thin-film transistors (TFTs) is becoming an important design parameter, especially when the TFTs are made on compliant substrates. Excessive stress always has been avoided to prevent film fracture and peeling. Now, attention is turning to the effects of stres...
The structure of amorphous silicon in its pure and hydrogenated form has attracted wide interest over the last five decades. This substantial interest is twofold. Firstly, amorphous silicon is a technologically highly significant material with many applications such as photovoltaic cells or thin-film transistors. Secondly, physically it is a fundamentally interesting material which has been reg...
Hydrogenated amorphous silicon (a–Si:H) can be applied as a passivation layer in silicon heterojunction (SHJ) solar cells. In this project, depositions of a–Si:H thin films have been carried out using ICP–PECVD under several deposition conditions. This has been done to gain insight into the deposition process and how the properties of the deposited film can be controlled. To reach this goal, th...
Articles you may be interested in Mobility enhancement in amorphous InGaZnO thin-film transistors by Ar plasma treatment Appl. Correlation of photoconductivity response of amorphous In–Ga–Zn–O films with transistor performance using microwave photoconductivity decay method Appl. Fully transparent InGaZnO thin film transistors using indium tin oxide/graphene multilayer as source/drain electrodes...
For wafer based silicon solar cells, the combination of amorphous/crystalline silicon (a-Si:H/c-Si) heterojunction emitters (SHJ) [1] and back-contacted back-junction solar cell concepts (BCBJ) [2] offer a very high efficiency potential of around 24%. Stangl et al. proposed a relatively simple and therefore attractive cell concept comprising a two level metallization isolated by an insulation l...
Amorphous hydrogenated silicon (a-Si:H) is known to be a perspective material for negative electrodes of modern lithium-ion batteries. The electrochemical lithium insertion into thin-film a-Si:H electrodes is studied using chronopotentiometry, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The electrodes were grown on stainless-steel substrates by glow discharge at t...
The main impetus for our research is provided by the growing interest worldwide in ultra thin silicon dioxide on silicon based nano devices. The obvious need for better knowledge in the ultra thin gate silicon dioxides, is motivated both by interests in fundamental research and phenomenology as well as by interests in possible applications, which can be found with better fitting of experimental...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید