نتایج جستجو برای: super finitely separating functions
تعداد نتایج: 567663 فیلتر نتایج به سال:
We estimate the upper box and Hausdorff dimensions of the Julia set of an expanding semigroup generated by finitely many rational functions, using the thermodynamic formalism in ergodic theory. Furthermore, we show Bowen’s formula, and the existence and uniqueness of a conformal measure, for a finitely generated expanding semigroup satisfying the open set condition.
We estimate the upper box and Hausdorff dimensions of the Julia set of an expanding semigroup generated by finitely many rational functions, using the thermodynamic formalism in ergodic theory. Furthermore, we show Bowen’s formula, and the existence and uniqueness of a conformal measure, for a finitely generated expanding semigroup satisfying the open set condition.
We estimate the upper box and Hausdorff dimensions of the Julia set of an expanding semigroup generated by finitely many rational functions, using the thermodynamic formalism in ergodic theory. Furthermore, we show Bowen’s formula, and the existence and uniqueness of a conformal measure, for a finitely generated expanding semigroup satisfying the open set condition.
We estimate the upper box and Hausdorff dimensions of the Julia set of an expanding semigroup generated by finitely many rational functions, using the thermodynamic formalism in ergodic theory. Furthermore, we show Bowen’s formula, and the existence and uniqueness of a conformal measure, for a finitely generated expanding semigroup satisfying the open set condition.
The main result of the paper determines all real meromorphic functions f of finite order in the plane such that f ′ has finitely many zeros while f and f(k), for some k ≥ 2, have finitely many non-real zeros. MSC 2000: 30D20, 30D35.
We estimate the upper box and Hausdorff dimensions of the Julia set of an expanding semigroup generated by finitely many rational functions, using the thermodynamic formalism in ergodic theory. Furthermore, we show Bowen’s formula, and the existence and uniqueness of a conformal measure, for a finitely generated expanding semigroup satisfying the open set condition.
We estimate the upper box and Hausdorff dimensions of the Julia set of an expanding semigroup generated by finitely many rational functions, using the thermodynamic formalism in ergodic theory. Furthermore, we show Bowen’s formula, and the existence and uniqueness of a conformal measure, for a finitely generated expanding semigroup satisfying the open set condition.
We estimate the upper box and Hausdorff dimensions of the Julia set of an expanding semigroup generated by finitely many rational functions, using the thermodynamic formalism in ergodic theory. Furthermore, we show Bowen’s formula, and the existence and uniqueness of a conformal measure, for a finitely generated expanding semigroup satisfying the open set condition.
An upper dominating set in a graph is a minimal (with respect to set inclusion) dominating set of maximum cardinality. The problem of finding an upper dominating set is generally NP-hard, but can be solved in polynomial time in some restricted graph classes, such as P4-free graphs or 2K2-free graphs. For classes defined by finitely many forbidden induced subgraphs, the boundary separating diffi...
We estimate the upper box and Hausdorff dimensions of the Julia set of an expanding semigroup generated by finitely many rational functions, using the thermodynamic formalism in ergodic theory. Furthermore, we show Bowen’s formula, and the existence and uniqueness of a conformal measure, for a finitely generated expanding semigroup satisfying the open set condition.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید