It follows from a construction for independent sets in the powers of odd cycles given in the predecessor of this paper that the limit as k goes to infinity of k+ 1/2−Θ(C2k+1) is zero, where Θ(G) is the Shannon capacity of a graph G. This paper contains a shorter proof of this limit theorem that is based on an ‘expansion process’ introduced in an older paper of L. Baumert, R. McEliece, E. Rodemi...