نتایج جستجو برای: total dominator chromatic number

تعداد نتایج: 1837510  

Journal: :Journal of Graph Theory 2021

A graph $G$ is Ramsey for a $H$ if every colouring of the edges in two colours contains monochromatic copy $H$. Two graphs $H_1$ and $H_2$ are equivalent any only it $H_2$. parameter $s$ distinguishing $s(H_1)\neq s(H_2)$ implies that not equivalent. In this paper we show chromatic number parameter. We also extend to multi-colour case use similar idea find another which distinguishing.

Journal: :Discrete Mathematics 2015
Csilla Bujtás

In the domination game studied here, Dominator and Staller alternately choose a vertex of a graph G and take it into a set D. The number of vertices dominated by the set D must increase in each single turn and the game ends when D becomes a dominating set of G. Dominator aims to minimize whilst Staller aims to maximize the number of turns (or equivalently, the size of the dominating set D obtai...

Journal: :Electronic Notes in Discrete Mathematics 2009

Journal: :Discrete Applied Mathematics 2009

Journal: :Discrete Mathematics 2021

We study the hat chromatic number of a graph defined in following way: there is one player at each vertex G , an adversary places K colors on head player, two players can see other's hats if and only they are adjacent vertices. All simultaneously try to guess color their hat. The cannot communicate but collectively determine strategy before placed. number, denoted by HG ( ) largest such that ab...

Journal: :The Electronic Journal of Combinatorics 2012

Kh. Erfani S. Rahimi Sharbaf

‎For a coloring $c$ of a graph $G$‎, ‎the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively‎ ‎$sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$‎, ‎where the summations are taken over all edges $abin E(G)$‎. ‎The edge-difference chromatic sum‎, ‎denoted by $sum D(G)$‎, ‎and the edge-sum chromatic sum‎, ‎denoted by $sum S(G)$‎, ‎a...

Journal: :Discrete Mathematics 1994
Colin McDiarmid Abdón Sánchez-Arroyo

The total chromatic number of an arbitrary graph is the smallest number of colours needed to colour the edges and vertices of the graph so that no two adjacent or incident elements of the graph receive the same colour. In this paper we prove that the problem of determining the total chromatic number of a k-regular bipartite graph is NP-hard, for each fixed k > 3.

2015
Sandi Klavžar Gašper Košmrlj Simon Schmidt

The domination game is played on a graph G by Dominator and Staller. The two players are taking turns choosing a vertex from G such that at least one previously undominated vertex becomes dominated; the game ends when no move is possible. The game is called D-game when Dominator starts it, and S-game otherwise. Dominator wants to finish the game as fast as possible, while Staller wants to prolo...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید