نتایج جستجو برای: vertex coloring
تعداد نتایج: 48615 فیلتر نتایج به سال:
Submodularity (or concavity) is considered as an important property in the field of cooperative game theory. In this article, we characterize submodular minimum coloring games and submodular minimum vertex cover games. These characterizations immediately show that it can be decided in polynomial time that the minimum coloring game or the minimum vertex cover game on a given graph is submodular ...
The Road Coloring Conjecture is an old and classical conjecture posed in Adler and Weiss (1970); Adler et al. (1977). Let G be a strongly connected digraph with uniform out-degree 2. The Road Coloring Conjecture states that, under a natural (necessary) condition that G is “aperiodic”, the edges of G can be colored red and blue such that “universal driving directions” can be given for each verte...
We investigate the relationship between two kinds of vertex colorings of hypergraphs: unique-maximum colorings and conflict-free colorings. In a unique-maximum coloring, the colors are ordered, and in every hyperedge of the hypergraph the maximum color in the hyperedge occurs in only one vertex of the hyperedge. In a conflict-free coloring, in every hyperedge of the hypergraph there exists a co...
We study online algorithms with advice for the problem of coloring graphs which come as input vertex by vertex. We consider the class of all 3-colorable graphs and its sub-classes of chordal and maximal outerplanar graphs, respectively. We show that, in the case of the first two classes, for coloring optimally, essentially log2 3 advice bits per vertex (bpv) are necessary and sufficient. In the...
A 1-plane graph is a graph embedded in the plane such that each edge is crossed at most once. A 1-plane graph is optimal if it has maximum edge density. A red-blue edge coloring of an optimal 1-plane graph G partitions the edge set of G into blue edges and red edges such that no two blue edges cross each other and no two red edges cross each other. We prove the following: (i) Every optimal 1-pl...
We show complexity results for some generalizations of the graph coloring problem on two classes of perfect graphs, namely clique trees and unit interval graphs. We deal with the μ-coloring problem (upper bounds for the color on each vertex), the precoloring extension problem (a subset of vertices colored beforehand), and a problem generalizing both of them, the (γ, μ)-coloring problem (lower a...
We consider vertex colorings of graphs in which each color has an associated cost which is incurred each time the color is assigned to a vertex. The cost of the coloring is the sum of the costs incurred at each vertex. The cost chromatic number of a graph with respect to a cost set is the minimum number of colors necessary to produce a minimum cost coloring of the graph. We show that the cost c...
A proper vertex coloring of a simple graph is k-forested if the graph induced by the vertices of any two color classes is a forest with maximum degree less than k. A graph is k-forested qchoosable if for a given list of q colors associated with each vertex v, there exists a k-forested coloring of G such that each vertex receives a color from its own list. In this paper, we prove that the k-fore...
An equitable coloring of a graph is a proper vertex coloring such that the sizes of any two color classes differ by at most 1. A d-degenerate graph is a graph G in which every subgraph has a vertex with degree at most d. A star Sm with m rays is an example of a 1-degenerate graph with maximum degree m that needs at least 1 + m/2 colors for an equitable coloring. Our main result is that every n-...
For planar graphs, we consider the problems of list edge coloring and list total coloring. Edge coloring is the problem of coloring the edges while ensuring that two edges that are adjacent receive different colors. Total coloring is the problem of coloring the edges and the vertices while ensuring that two edges that are adjacent, two vertices that are adjacent, or a vertex and an edge that ar...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید