It is known that for every integer k ≥ 4, each k-map graph with n vertices has at most kn − 2k edges. Previously, it was open whether this bound is tight or not. We show that this bound is tight for k = 4, 5. We also show that this bound is not tight for large enough k (namely, k ≥ 374); more precisely, we show that for every 0 < < 3 328 and for every integer k ≥ 140 41 , each k-map graph with ...