نتایج جستجو برای: bagging model
تعداد نتایج: 2105681 فیلتر نتایج به سال:
there are three major strategies to form neural network ensembles. the simplest one is the cross validation strategy in which all members are trained with the same training data. bagging and boosting strategies pro-duce perturbed sample from training data. this paper provides an ideal model based on two important factors: activation function and number of neurons in the hidden layer and based u...
The ecological niche is the set of environments in which a population of a species can persist without introduction of individuals from other locations. A good mathematical or computational representation of the niche is a prerequisite to addressing many questions in ecology, biogeography, evolutionary biology and conservation. A particularly challenging question for ecological niche modelling ...
Ensemble learning has gained success in machine with major advantages over other methods. Bagging is a prominent ensemble method that creates subgroups of data, known as bags, are trained by individual methods such decision trees. Random forest example bagging additional features the process. Evolutionary algorithms have been for optimisation problems and also used learning. gradient-free work ...
Most classifiers work well when the class distribution in the response variable of the dataset is well balanced. Problems arise when the dataset is imbalanced. This paper applied four methods: Oversampling, Undersampling, Bagging and Boosting in handling imbalanced datasets. The cardiac surgery dataset has a binary response variable (1=Died, 0=Alive). The sample size is 4976 cases with 4.2% (Di...
Aiming at the problems of the traditional feature selection methods that threshold filtering loses a lot of effective architectural information and the shortcoming of Bagging algorithm that weaker classifiers of Bagging have the same weights to improve the performance of Chinese architectural document categorization, a new algorithm based on Rough set and Confidence Attribute Bagging is propose...
Pattern recognition systems have been widely used in adversarial classification tasks like spam filtering and intrusion detection in computer networks. In these applications a malicious adversary may successfully mislead a classifier by “poisoning” its training data with carefully designed attacks. Bagging is a well-known ensemble construction method, where each classifier in the ensemble is tr...
This paper investigates different ways of combining feature selection with bagging and rule extraction in predictive modeling. Experiments on a large number of data sets from the medicinal chemistry domain, using standard algorithms implemented in the Weka data mining workbench, show that feature selection can lead to significantly improved predictive performance. When combining feature selecti...
Fraud is a global problem that has required more attention due to an accentuated expansion of modern technology and communication. When statistical techniques are used to detect fraud, whether a fraud detection model is accurate enough in order to provide correct classification of the case as a fraudulent or legitimate is a critical factor. In this context, the concept of bootstrap aggregating ...
The authorship attribution literature demonstrates the difficulty to design classifiers that outperform simple strategies such as linear classifiers operating on bag of features representation of documents. To overcome this difficulty we propose to use Bagging techniques that rely on learning classifiers on different random subsets of features, then to combine their decision by making them vote...
Boosting and Bagging, as two representative approaches to learning classiier committees, have demonstrated great success, especially for decision tree learning. They repeatedly build diierent classiiers using a base learning algorithm by changing the distribution of the training set. Sasc, as a diierent type of committee learning method, can also signiicantly reduce the error rate of decision t...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید