نتایج جستجو برای: barycentric subdivision
تعداد نتایج: 8354 فیلتر نتایج به سال:
This paper is concerned with applications of Tutte’s barycentric embedding theorem (1963, Proc. London Math. Soc. 13, 743–768). It presents a method for building isotopies of triangulations in the plane, based on Tutte’s theorem and the computation of equilibrium stresses of graphs by Maxwell–Cremona’s theorem; it also provides a counterexample showing that the analogue of Tutte’s theorem in di...
The paper describes a method for generating combinatorial complexes of polyhedral type. Building blocks B are implanted into the maximal simplices of a simplicial complex C, on which a group operates as a combinatorial reflection group. Of particular interest is the case where B is a polyhedral block and C the barycentric subdivision of a regular incidence-polytope K together with the action of...
We present two methods for lossy compression of normal vectors through quantization using “base” polyhedra. The first revisits subdivision-based quantization. The second uses fixed-precision barycentric coordinates. For both, we provide fast (de)compression algorithms and a rigorous upper bound on compression error. We discuss the effects of base polyhedra on the error bound and suggest polyhed...
We introduce a new encoding of the face numbers of a simplicial complex, its Stirling polynomial, that has a simple expression obtained by multiplying each face number with an appropriate generalized binomial coefficient. We prove that the face numbers of the barycentric subdivision of the free join of two CW -complexes may be found by multiplying the Stirling polynomials of the barycentric sub...
We present a theory and applications of discrete exterior calculus on simplicial complexes of arbitrary finite dimension. This can be thought of as calculus on a discrete space. Our theory includes not only discrete differential forms but also discrete vector fields and the operators acting on these objects. This allows us to address the various interactions between forms and vector fields (suc...
Associated to any finite flag complex L there is a right-angled Coxeter group WL and a contractible cubical complex ΣL (the Davis complex) on which WL acts properly and cocompactly, and such that the link of each vertex is L. It follows that if L is a generalized homology sphere, then ΣL is a contractible homology manifold. We prove a generalized version of the Singer Conjecture (on the vanishi...
We present a theory and applications of discrete exterior calculus on simplicial complexes of arbitrary finite dimension. This can be thought of as calculus on a discrete space. Our theory includes not only discrete differential forms but also discrete vector fields and the operators acting on these objects. This allows us to address the various interactions between forms and vector fields (suc...
In a fundamental paper in polyhedral combinatorics, Queyranne describes the complete facial structure of a classical object in combinatorial optimization, the single machine scheduling polytope. In the same paper, he answers essentially all relevant algorithmic questions with respect to optimization and separation. In the present paper, motivated by recent applications in the design of optimal ...
At the 2014 International Congress of Mathematicians in Seoul, South Korea, Franco-Brazilian mathematician Artur Avila was awarded the Fields Medal for “his profound contributions to dynamical systems theory, which have changed the face of the field, using the powerful idea of renormalization as a unifying principle.” Although it is not explicitly mentioned in this citation, there is a second u...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید