نتایج جستجو برای: cauchy rassias stability
تعداد نتایج: 308801 فیلتر نتایج به سال:
Using fixed point methods, we prove the generalized Hyers–Ulam–Rassias stability of ternary homomorphisms, and ternary multipliers in ternary Banach algebras for the Jensen–type functional equation f( x+ y + z 3 ) + f( x− 2y + z 3 ) + f( x+ y − 2z 3 ) = f(x) .
In this paper, we obtain the general solution and investigate the Hyers-Ulam-Rassias stability of the functional equation f(ax− y)± af(x± y) = (a± 1)[af(x)± f(y)] in non-Archimedean -fuzzy normed spaces. Mathematics Subject Classification: 39B55, 39B52, 39B82
* Correspondence: [email protected] Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia Abstract The object of this article is to determine Hyers-Ulam-Rassias stability results concerning the cubic functional equation in fuzzy normed space by using the fixed point method.
In this paper, we will consider Hyers–Ulam–Rassias stability of multipliers and ring derivations between Banach algebras. As a corollary, we will prove superstability of ring derivations and multipliers. That is, approximate multipliers and approximate ring derivations are exact multipliers and ring derivations.
In this paper, we establish the general solution of the functional equation f(nx+ y) + f(nx− y) = nf(x+ y) + nf(x− y) + 2(f(nx)− nf(x))− 2(n − 1)f(y) for fixed integers n with n 6= 0,±1 and investigate the generalized Hyers-Ulam-Rassias stability of this equation in quasi-Banach spaces.
In this paper, we present the HyersUlamRassias stability of quartic functional equation f(2x + y) + f(2x – y) = 4.f(x + y) + 4f(x – y) + 24f(x) ( 6f(y) in Random 2Normed space . References 1. A. Alotaibi, S.A. Mohiuddine; On the stability of a cubic functional equation in random 2-normed spaces, Advances in Difference Equations, 1,39 (2012) pp. 1-10. 2. D.H. Hyers; On the stability of the linea...
We propose a new method, called the textit{the weighted space method}, for the study of the generalized Hyers-Ulam-Rassias stability. We use this method for a nonlinear functional equation, for Volterra and Fredholm integral operators.
The generalized Hyers-Ulam-Rassias stability proposition in respect of the quadratic functional equation namely f(x+y+z)+f(x−y)+f(x−z) = f(x−y−z)+f(x+y)+f(x+z) is what is taken into account to be dealt with in this paper.
In this paper, we prove the generalized Hyres–Ulam–Rassias stability of the mixed type cubic and quartic functional equation f (x + 2y) + f (x − 2y) = 4(f (x + y) + f (x − y)) − 24f (y) − 6f (x) + 3f (2y) in non-Archimedean ℓ-fuzzy normed spaces.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید