When a function f(x) is holomorphic on an interval x ∈ [a, b], its roots on the interval can be computed by the following three-step procedure. First, approximate f(x) on [a, b] by a polynomial fN (x) using adaptive Chebyshev interpolation. Second, form the Chebyshev– Frobenius companion matrix whose elements are trivial functions of the Chebyshev coefficients of the interpolant fN (x). Third, ...