نتایج جستجو برای: chebyshev polynomial

تعداد نتایج: 100912  

Journal: :Int. J. Math. Mathematical Sciences 2005
Elías Berriochoa Alicia Cachafeiro José Manuel García Amor

We obtain a property which characterizes the Chebyshev orthogonal polynomials of first, second, third, and fourth kind. Indeed, we prove that the four Chebyshev sequences are the unique classical orthogonal polynomial families such that their linear combinations, with fixed length and constant coefficients, can be orthogonal polynomial sequences. 1. Introduction The classical orthogonal polynom...

Journal: :Numerische Mathematik 2005
Carlos M. da Fonseca J. Petronilho

We obtain explicit formulas for the entries of the inverse of a nonsingular and irreducible tridiagonal k−Toeplitz matrix A. The proof is based on results from the theory of orthogonal polynomials and it is shown that the entries of the inverse of such a matrix are given in terms of Chebyshev polynomials of the second kind. We also compute the characteristic polynomial of A which enable us to s...

2008
Eli Ben-Naim

The nonlinear integral equation P (x) = ∫ β α dy w(y)P (y)P (x + y) is investigated. It is shown that for a given function w(x) the equation admits an infinite set of polynomial solutions P (x). For polynomial solutions, this nonlinear integral equation reduces to a finite set of coupled linear algebraic equations for the coefficients of the polynomials. Interestingly, the set of polynomial sol...

Journal: :Eur. J. Comb. 2002
Toufik Mansour

Babson and Steingrimsson (2000, Séminaire Lotharingien de Combinatoire, B44b, 18) introduced generalized permutation patterns that allow the requirement that two adjacent letters in a pattern must be adjacent in the permutation. Let fτ ;r (n) be the number of 1-3-2-avoiding permutations on n letters that contain exactly r occurrences of τ , where τ is a generalized pattern on k letters. Let Fτ ...

2012
Heinrich Niederhausen

The connection between weighted counts of Motzkin paths and moments of orthogonal polynomials is well known. We look at the inverse generating function of Motzkin paths with weighted horizontal steps, and relate it to Chebyshev polynomials of the second kind. The inverse can be used to express the number of paths ending at a certain height in terms of those ending at height 0. Paths of a more g...

2006
Emrah Kilic Dursun Tasci

We show the relationships between the determinants and permanents of certain tridiagonal matrices and the negatively subscripted terms of second-order linear recurrences.Also considering how to the negatively subscripted terms of second-order linear recurrences can be connected to Chebyshev polynomials by determinants of these matrices, we give factorizations and representations of these number...

Journal: :Discrete Applied Mathematics 2006
Qing-Hu Hou Toufik Mansour

Several authors have examined connections among 132-avoiding permutations, continued fractions, and Chebyshev polynomials of the second kind. In this paper we find analogues for some of these results for permutations π avoiding 132 and 1223 (there is no occurrence πi < πj < πj+1 such that 1 ≤ i ≤ j − 2) and provide a combinatorial interpretation for such permutations in terms of lattice paths. ...

Journal: :Math. Comput. 2016
Yuji Nakatsukasa Vanni Noferini

A common way of computing the roots of a polynomial is to find the eigenvalues of a linearization, such as the companion (when the polynomial is expressed in the monomial basis), colleague (Chebyshev basis) or comrade matrix (general orthogonal polynomial basis). For the monomial case, many studies exist on the stability of linearization-based rootfinding algorithms. By contrast, little seems t...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید