نتایج جستجو برای: cox proportional hazards

تعداد نتایج: 124379  

2007
Thomas Kneib Ludwig Fahrmeir

The classical Cox proportional hazards model is a benchmark approach to analyze continuous survival times in the presence of covariate information. In a number of applications, there is a need to relax one or more of its inherent assumptions, such as linearity of the predictor or the proportional hazards property. Also, one is often interested in jointly estimating the baseline hazard together ...

Fallahzadeh, Hossein , Mohammadzadeh, Morteza , Nikpour, Abolfazl , Pahlevani, Nima , Pahlevani, Vida ,

  Abstract Background: Lung cancer is one of the most common cancers around the world. The aim of this study was to use Extended Cox Model (ECM) with Bayesian approach to survey the behavior of potential time-varying prognostic factors of Non-small cell lung cancer. Materials and Methods: Survival status of all 190 patients diagnosed with Non-Small Cell lung cancer referring to hospitals in ...

Journal: :Lifetime data analysis 2001
W Pan

The accelerated failure time (AFT) model is an important alternative to the Cox proportional hazards model (PHM) in survival analysis. For multivariate failure time data we propose to use frailties to explicitly account for possible correlations (and heterogeneity) among failure times. An EM-like algorithm analogous to that in the frailty model for the Cox model is adapted. Through simulation i...

Journal: :Bioinformatics 2010
Daniela Dunkler Michael Schemper Georg Heinze

MOTIVATION Univariate Cox regression (COX) is often used to select genes possibly linked to survival. With non-proportional hazards (NPH), COX could lead to under- or over-estimation of effects. The effect size measure c=P(T(1)<T(0)), i.e. the probability that a person randomly chosen from group G(1) dies earlier than a person from G(0), is independent of the proportional hazards (PH) assumptio...

2008
WEI WANG QIHUA WANG

Proportional hazards regression model assumes that the covariates affect the hazard function through a link function and an index which is a linear function of the covariates. Traditional approaches, such as the Cox proportional hazards model, focus on estimating the unknown index by assuming a known link function between the log-hazard function and covariates. A linear link function is often e...

2013
Zohreh Amiri Kazem Mohammad Mahmood Mahmoudi Mahbubeh Parsaeian Hojjat Zeraati

BACKGROUND There are numerous unanswered questions in the application of artificial neural network models for analysis of survival data. In most studies, independent variables have been studied as qualitative dichotomous variables, and results of using discrete and continuous quantitative, ordinal, or multinomial categorical predictive variables in these models are not well understood in compar...

Journal: :Biometrics 2016
Xiaogang Su Chalani S Wijayasinghe Juanjuan Fan Ying Zhang

We propose a new sparse estimation method for Cox (1972) proportional hazards models by optimizing an approximated information criterion. The main idea involves approximation of the ℓ0 norm with a continuous or smooth unit dent function. The proposed method bridges the best subset selection and regularization by borrowing strength from both. It mimics the best subset selection using a penalized...

2014
Dan Jackson Ian R White Shaun Seaman Hannah Evans Kathy Baisley James Carpenter

The Cox proportional hazards model is frequently used in medical statistics. The standard methods for fitting this model rely on the assumption of independent censoring. Although this is sometimes plausible, we often wish to explore how robust our inferences are as this untestable assumption is relaxed. We describe how this can be carried out in a way that makes the assumptions accessible to al...

2018
Jared L Katzman Uri Shaham Alexander Cloninger Jonathan Bates Tingting Jiang Yuval Kluger

BACKGROUND Medical practitioners use survival models to explore and understand the relationships between patients' covariates (e.g. clinical and genetic features) and the effectiveness of various treatment options. Standard survival models like the linear Cox proportional hazards model require extensive feature engineering or prior medical knowledge to model treatment interaction at an individu...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید