نتایج جستجو برای: diophantine approximation
تعداد نتایج: 200310 فیلتر نتایج به سال:
We show that Y. Cheung’s general Z-continued fractions can be adapted to give approximation by saddle connection vectors for any compact translation surface. That is, we show the finiteness of his Minkowski constant for any compact translation surface. Furthermore, we show that for a Veech surface in standard form, each component of any saddle connection vector dominates its conjugates. The sad...
Let be a strictly positive monotonically decreasing function deened on the set of positive integers. Given real numbers and , consider the solubility of the following two inequalities jq + pj < (q); (1) jq + p + j < (q) (2) for integers p and q. The rst problem is said to be homogeneous and the second inho-mogeneous (see 2]). The well known theorem of Khintchine 2, 4] asserts that for almost al...
This text is devoted to simultaneous approximation to ξ and ξ by rational numbers with the same denominator, where ξ is an irrational non-quadratic real number. We focus on an exponent β0(ξ) that measures the regularity of the sequence of all exceptionally precise such approximants. We prove that β0(ξ) takes the same set of values as a combinatorial quantity that measures the abundance of palin...
Let C be a non-degenerate planar curve. We show that the curve is of Khintchine-type for convergence in the case of simultaneous approximation in R 2 with two independent approximation functions; that is if a certain sum converges then the set of all points (x, y) on the curve which satisfy simultaneously the inequalities qx < ψ1(q) and qy < ψ2(q) infinitely often has induced measure 0. This co...
As observed originally by C. Osgood, certain statements in value distribution theory bear a strong resemblance to certain statements in diophantine approximation, and their corollaries for holomorphic curves likewise resemble statements for integral and rational points on algebraic varieties. For example, if X is a compact Riemann surface of genus > 1, then there are no non-constant holomorphic...
We look at Diophantine equations arising from equating classical counting functions such as perfect powers, binomial coefficients and Stirling numbers of the first and second kind. The proofs of the finiteness statements that we give use a variety of methods from modern number theory, such as effective and ineffective tools from Diophantine approximation. As a tool for one part of the statement...
We give many equivalent statements of Mahler’s generalization of the fundamental theorem of Thue. In particular, we show that the theorem of Thue–Mahler for degree 3 implies the theorem of Thue for arbitrary degree ≥ 3, and we relate it with a theorem of Siegel on the rational integral points on the projective line P(K) minus 3 points. Classification MSC 2010: 11D59; 11J87; 11D25
A keystone in the classical theory of diophantine approximation is the construction of an auxilliary polynomial. The polynomial is constructed so that it is forced (for arithmetic reasons) to vanish at certain approximating points and this contradicts an upper bound on the order of vanishing obtained by other (usually geometric) techniques; the contradiction then allows one to prove finiteness ...
We begin by recalling some classical results on normal and nonnormal numbers. Then, we discuss the following general question. Take a property of Diophantine approximation (e.g., to be badly approximable by rational numbers, to be a Liouville number, etc.) and a property concerning the digits (e.g., to be normal, to lie in the middle third Cantor set, etc.), do there exist real numbers having b...
In contrast to Roth’s theorem that all algebraic irrational real numbers have approximation exponent two, the distribution of the exponents for the function field counterparts is not even conjecturally understood. We describe some recent progress made on this issue. An explicit continued fraction is not known even for a single non-quadratic algebraic real number. We provide many families of exp...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید