نتایج جستجو برای: finsler space
تعداد نتایج: 495308 فیلتر نتایج به سال:
A general framework for the description of classic wave propagation is introduced. This relies on a cone structure C determined by an intrinsic space ? velocities (point, direction and time-dependent) observers’ vector field ???t whose integral curves provide both Zermelo problem auxiliary Lorentz–Finsler metric G compatible with C. The PDE wavefront reduced to ODE t-parametrized geodesics Part...
© Annales de l’institut Fourier, 1968, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier...
Locally flat Finsler metrics arise from information geometry. Some speciel locally dually flat Finsler metrics had been studied in Cheng et al. [3] and Xia [4] respectively. As we konw, a new class of Finsler metrics called general (α, β)-metrics are introduced, which are defined by a Riemannian metrics α and 1-form β. These metrics generalize (α, β)-metrics naturally. In this paper, we give a ...
Continuing the study of the complex indicatrix IzM , approached as an embedded CR hypersurface on the punctual holomorphic tangent bundle of a complex Finsler space, we study in this paper the almost contact structures that can be introduced on IzM . The Levi form and characteristic direction of the complex indicatrix are given and the CR distributions integrability is studied. Using these we c...
In the present paper, we investigate the necessary and sufficient condition of a given Finsler metric to be Einstein. The considered Einstein Finsler metric in the study describes all different kinds of Einstein metrics which are pointwise projective to the given one.
In this paper, we define a new projective invariant and call it W̃ -curvature. We prove that a Finsler manifold with dimension n ≥ 3 is of constant flag curvature if and only if its W̃ -curvature vanishes. Various kinds of projectively flatness of Finsler metrics and their equivalency on Riemannian metrics are also studied. M.S.C. 2010: 53B40, 53C60.
In this paper we take a close look at Lie derivatives on a Finsler bundle and give a geometric meaning to the vanishing of the mixed curvature of certain covariant derivatives on a Finsler bundle. As an application, we obtain some characterizations of Landsberg manifolds.
The credit for introducing the geometry of Lagrange spaces and their subspaces goes to the famous Romanian geometer Miron 1 . He developed the theory of subspaces of a Lagrange space together with Bejancu 2 . Miron and Anastasiei 3 and Sakaguchi 4 studied the subspaces of generalized Lagrange spaces GL spaces in short . Antonelli and Hrimiuc 5, 6 introduced the concept of φ-Lagrangians and stud...
The aim of this paper is to show that holonomy properties of Finsler manifolds can be very different from those of Riemannian manifolds. We prove that the holonomy group of a positive definite non-Riemannian Finsler manifold of non-zero constant curvature with dimension > 2 cannot be a compact Lie group. Hence this holonomy group does not occur as the holonomy group of any Riemannian manifold. ...
In this paper, we study the class of of C3-like Finsler metrics which contains the class of semi-C-reducible Finsler metric. We find a condition on C3-like metrics under which the notions of Landsberg curvature and mean Landsberg curvature are equivalent.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید