نتایج جستجو برای: fourth kind chebyshev wavelets
تعداد نتایج: 170838 فیلتر نتایج به سال:
Discrete wavelet transform is an effective tool to generate scalable stream, but it cannot efficiently represent edges which are not aligned in horizontal or vertical directions, while natural images often contain rich edges and textures of this kind. Hence, recently, intensive research has been focused particularly on the directional wavelets which can effectively represent directional attribu...
Abstract In this paper, we study the Legendre wavelets for the solution of linear, nonlinear and singular Fredholm integral equations of second kind using approximation technique. The properties of Legendre wavelets together with the Gaussian integration method are used to reduce the problem to the solution of algebraic equations. The main purpose of this article is to discuss the theoretical a...
In this paper, we use the continuous Legendre wavelets on the interval [0,1] constructed by Razzaghi M. and Yousefi S. [6] to solve the linear second kind integral equations. We use quadrature formula for the calculation of the products of any functions, which are required in the approximation for the integral equations. Then we reduced the integral equation to the solution of linear algebraic ...
In this paper, an efficient and accurate computational method based on the Chebyshev wavelets (CWs) together with spectral Galerkin method is proposed for solving a class of nonlinear multi-order fractional differential equations (NMFDEs). To do this, a new operational matrix of fractional order integration in the Riemann-Liouville sense for the CWs is derived. Hat functions (HFs) and the collo...
in this paper, we present a numerical method for solving nonlinear fredholm and volterra integral equations of the second kind which is based on the use of haar wavelets and collocation method. we use properties of block pulse functions (bpf) for solving volterra integral equation. numerical examples show efficiency of the method.
In this paper we introduce a type of fractional-order polynomials based on the classical Chebyshev polynomials of the second kind (FCSs). Also we construct the operational matrix of fractional derivative of order $ gamma $ in the Caputo for FCSs and show that this matrix with the Tau method are utilized to reduce the solution of some fractional-order differential equations.
In this paper, we are going to solve a class of ordinary differential equations that its source term are rational functions. We obtain the best approximation of source term by Chebyshev polynomials of the first kind, then we solve the ordinary differential equations by using the Adomian decomposition method
The Lane-Emden equation has been used to model several phenomenas in theoretical physics, mathematical physics and astrophysics such as the theory of stellar structure. This study is an attempt to utilize the collocation method with the Rational Chebyshev of Second Kind function (RSC) to solve the Lane-Emden equation over the semi-infinit interval [0,+∞). According to well-known results and com...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید