نتایج جستجو برای: fuzzy fredholm integral equation
تعداد نتایج: 420894 فیلتر نتایج به سال:
A numerical method for solving nonlinear Fredholm-Volterra integral equations of general type is presented. This method is based on replacement of unknown function by truncated series of well known Chebyshev expansion of functions. The quadrature formulas which we use to calculate integral terms have been imated by Fast Fourier Transform (FFT). This is a grate advantage of this method which has...
In a 1977 paper of McCoy, Tracy and Wu [2] there appeared for the first time the solution of a Painlevé equation in terms of Fredholm determinants of integral operators. Specifically, it was shown that a one-parameter family of solutions of the equation ψ ′′ (t) + t −1 ψ ′ (t) = 1 2 sinh 2ψ + 2α t −1 sinh ψ, (1) a special case of the Painlevé III equation, is given by ψ(t) =
Finite-dimensional perturbing operators are constructed using some incomplete information about eigen-solutions of an original and/or adjoint generalized Fredholm operator equation (with zero index). Adding such perturbing operator to the original one reduces the eigen-space dimension and can, particularly, lead to an unconditionally and uniquely solvable perturbed equation. For the second kind...
In this paper, we studied the numerical solution of nonlinear weakly singular Volterra-Fredholm integral equations by using the product integration method. Also, we shall study the convergence behavior of a fully discrete version of a product integration method for numerical solution of the nonlinear Volterra-Fredholm integral equations. The reliability and efficiency of the proposed scheme are...
In this article the nonlinear mixed Volterra-Fredholm integral equations are investigated by means of the modied three-dimensional block-pulse functions (M3D-BFs). This method converts the nonlinear mixed Volterra-Fredholm integral equations into a nonlinear system of algebraic equations. The illustrative examples are provided to demonstrate the applicability and simplicity of our scheme.
The bending of a rectangular elastic plate under uniform distributed load and simply supported at the corners by equal-leg angles is studied analytically. The width of the supporting legs can be varied symmetrically about the plate axes giving mixed boundary conditions with supported and free edges. The solution is set up by using the Le'vy-Na'dai approach and the mixed boundary equation at the...
The power-law disks are a family of infinitesimally thin, axisymmetric stellar disks of infinite extent. The rotation curve can be rising, falling or flat. The self-consistent power-law disks are scale-free, so that all physical quantities vary as a power of radius. They possess simple equilibrium distribution functions depending on the two classical integrals, energy and angular momentum. Whil...
We apply the Kurzweil-Henstock integral setting to prove a Fredholm Alternative-type result for the integral equation x (t)− K Z [a,b] α (t, s)x (s) ds = f (t) , t ∈ [a, b] , where x and f are Kurzweil integrable functions (possibly highly oscillating) defined on a compact interval [a, b] of the real line with values on Banach spaces. An application is given.
In this work, we present a computational method for solving second kindnonlinear Fredholm Volterra integral equations which is based on the use ofHaar wavelets. These functions together with the collocation method are thenutilized to reduce the Fredholm Volterra integral equations to the solution ofalgebraic equations. Finally, we also give some numerical examples that showsvalidity and applica...
Keywords: Approximate solutions to integral equations Radial and kernel-based networks Gaussian kernels Model complexity Analysis of algorithms a b s t r a c t Approximate solutions to inhomogeneous Fredholm integral equations of the second kind by radial and kernel networks are investigated. Upper bounds are derived on errors in approximation of solutions of these equations by networks with in...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید