We prove that a GF(q)-linear Rédei blocking set of size qt + qt−1 + · · · + q + 1 of PG(2, qt ) defines a derivable partial spread of PG(2t − 1, q). Using such a relationship, we are able to prove that there are at least two inequivalent Rédei minimal blocking sets of size qt + qt−1 + · · · + q + 1 in PG(2, qt ), if t ≥ 4.