A module M is called product closed if every hereditary pretorsion class in σ[M ] is closed under products in σ[M ]. Every module which is locally of finite length is product closed and every product closed module is semilocal. LetM ∈ R-Mod be product closed and projective in σ[M ]. It is shown that (1) M is semiartinian; (2) if M is finitely generated then M satisfies the DCC on fully invarian...