Let A be a C∗-algebra. Let E and F be Hilbert A-modules with E being full. Suppose that θ : E → F is a linear map preserving orthogonality, i.e., 〈θ(x), θ(y)〉 = 0 whenever 〈x, y〉 = 0. We show in this article that if, in addition, A has real rank zero, and θ is an A-module map (not assumed to be bounded), then there exists a central positive multiplier u ∈M(A) such that 〈θ(x), θ(y)〉 = u〈x, y〉 (x...