We study the upper tail behaviors of the local times of the additive stable processes. Let X1(t), · · · , Xp(t) be independent, d-dimensional symmetric stable processes with stable index 0 < α ≤ 2 and consider the additive stable process X(t1, · · · , tp) = X1(t1) + · · · + Xp(tp). Under the condition d < αp, we obtain a precise form of large deviation principle for the local time