نتایج جستجو برای: nanoparticle iron catalyst
تعداد نتایج: 212890 فیلتر نتایج به سال:
A Pt nanoparticle netlike-assembly (Pt-NNA) synthesized through a facile hydrothermal method, with high specific surface area and large overall size, exhibits much higher durability and 2.9 times higher mass activity for oxygen reduction reaction than commercial Pt black catalyst.
We report on a self-assembled system comprising of a molecular H(2) production cobalt catalyst attached on a ruthenium dye-sensitised TiO(2) nanoparticle. Visible light irradiation of the dispersed nanoparticles in the presence of the sacrificial electron donor triethanolamine produces H(2) photocatalytically in pH neutral water and at room temperature.
An iron porphyrin catalyst with four electron donor groups is reported. The porphyrin ligand bears a distal hydrogen bonding pocket which inverts the normal axial ligand binding selectivity exhibited by porphyrins bearing sterically crowded distal structures. This catalyst specifically reduces O(2) by four electrons under both fast and slow electron fluxes at pH 7.
Copper-nanoparticle catalytic centres anchored at the graphitic step-edges within hollow carbon nanoreactors exhibit superior activity and stability in cycloaddition reactions as compared to catalytic centres outside the nanoreactors. Nanoscale confinement enables efficient recycling of the catalyst in preparative-scale synthesis without significant changes in activity.
In a one-pot reaction, hydrogen peroxide generated from H(2) and O(2) on a Pd catalyst was utilised as oxidant for the TiO(2) catalyzed conversion of a sulfide to a sulfone. This transformation, where two different nanoparticle catalysts were employed in a supercritical carbon dioxide/water biphasic system, demonstrates the potential of compartmentalising catalytic processes in consecutive reac...
The new heterogeneous catalyst based on MoO2(acac)2 immobilized on superparamagnetic nanoparticle functionalized with dendrimer was synthesized. The dendrimer with amine and sulfur functional groups offer proper positions for a strong connection between MoO2(acac)2 and support. The synthesized catalyst was characterized by FT-IR spectroscopy, ICP, TGA, SEM, TEM, and XRD. This catalyst showed hi...
Transition-metal-catalyzed [2+2+2] cycloaddition reactions that use two alkynes and a nitrile is the most straightforward and powerful strategy for the construction of multisubstituted pyridines with high atom efficiency. The iron-catalyzed [2+2+2] cycloaddition to form pyridines remains a great challenge in this field, although significant efforts have been made in various catalytic systems (e...
The sol immobilisation technique, in which a stabilising ligand (such as polyvinyl alcohol or polyvinyl pyridine) can be used to tune metal particle size and composition, has become a valuable method of making supported nanoparticle catalysts. An unfortunate consequence of the stabilising ligand is that often access of reactant molecules to the metal nanoparticle surface is impeded. Several met...
An embedded catalyst for the oxidative dehydration of glycerol, featuring iron oxide (FeO(x)) domains on the surface of an iron orthovanadate (FeVO₄) phase, is developed. Catalytic reactions are conducted in a fixed-bed reactor at 300 °C with a feed composition N₂/O₂/H₂O/glycerol=66.6:1.7:30.3:1.5. Catalytic results show that the catalyst exhibits a better performance than an FeO(x) catalyst pr...
Density functional theory (DFT) has been applied to study potential ammonia borane (AB) dehydrogenation pathways via new bifunctional ruthenium-based catalysts, alongside their computationally-designed iron-based counterparts (i.e., four catalysts), using the wB97XD (dispersion-included) functional. The efficiency of each catalyst was under scrutiny based on the addition of ammonia borane, with...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید