نتایج جستجو برای: newton kantorovitch method
تعداد نتایج: 1641328 فیلتر نتایج به سال:
1 Student of Department of Electronics & Communication Engineering, 2 Professor, Department of Mathematics, 1,2 R. V. College of Engineering, Mysore Road, Bangalore, Karnataka-560 059, INDIA __________________________________________________________________________________________ Abstract: New iterative algorithms for finding the nth root of a positive number m, to any degree of accuracy, are ...
چکیده ندارد.
We investigate an iterative method for the solution of time-periodic parabolic PDE constrained optimization problems. It is an inexact Sequential Quadratic Programming (iSQP) method based on the Newton-Picard approach. We present and analyze a linear quadratic model problem and prove optimal mesh-independent convergence rates. Additionally, we propose a two-grid variant of the Newton-Picard met...
In this paper we propose a subspace limited memory quasi-Newton method for solving large-scale optimization with simple bounds on the variables. The limited memory quasi-Newton method is used to update the variables with indices outside of the active set, while the projected gradient method is used to update the active variables. The search direction consists of three parts: a subspace quasi-Ne...
Newton methods can be applied in many supervised learning approaches. However, for large-scale data, the use of the whole Hessian matrix can be time-consuming. Recently, subsampled Newton methods have been proposed to reduce the computational time by using only a subset of data for calculating an approximation of the Hessian matrix. Unfortunately, we find that in some situations, the running sp...
In this paper, we present SILCA-Newton-Krylov, a new method for accurate, efficient and robust timedomain VLSI circuit simulation. Similar to SPICE, SILCA-Newton-Krylov uses time-difference and Newton-Raphson for solving nonlinear differential equations from circuit simulation. But different from SPICE, SILCA-Newton-Krylov explores a preconditioned flexible generalized minimal residual (FGMRES)...
It is well known that when the Jacobian of nonlinear systems is nonsingular in the neighborhood of the solution, the convergence of Newton method is guaranteed and the rate is quadratic. Violating this condition, i. e. the Jacobian to be singular the convergence may be unsatisfactory and may even be lost. In this paper we present a modification of Newton's method via extra updating for non...
The finite element setting for nonlinear elliptic PDEs directly leads to the minimization of convex functionals. Uniform ellipticity of the underlying PDE shows up as strict convexity of the arising nonlinear functional. The paper analyzes computational variants of Newton’s method for convex optimization in an affine conjugate setting, which reflects the appropriate affine transformation behavi...
Abstract. In 1986, Irvine, Marin, and Smith proposed a Newton-type method for shapepreserving interpolation and, based on numerical experience, conjectured its quadratic convergence. In this paper, we prove local quadratic convergence of their method by viewing it as a semismooth Newton method. We also present a modification of the method which has global quadratic convergence. Numerical exampl...
We develop general approximate Newton methods for solving Lipschitz continuous equations by replacing the iteration matrix with a consistently approximated Jacobian, thereby reducing the computation in the generalized Newton method. Locally superlinear convergence results are presented under moderate assumptions. To construct a consistently approximated Jacobian, we introduce two main methods: ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید