Let f : X → X be a map of a compact, connected Riemannian manifold, with or without boundary. For > 0 sufficiently small, we introduce an -Nielsen number N ( f ) that is a lower bound for the number of fixed points of all self-maps of X that are -homotopic to f . We prove that there is always a map g : X → X that is -homotopic to f such that g has exactlyN ( f ) fixed points. We describe proced...