نتایج جستجو برای: q shift differential polynomials
تعداد نتایج: 564984 فیلتر نتایج به سال:
Utilizing p,q-numbers and p,q-concepts, in 2016, Duran et al. considered p,q-Genocchi numbers polynomials, p,q-Bernoulli polynomials p,q-Euler provided multifarious formulas properties for these polynomials. Inspired motivated by this consideration, many authors have introduced (p,q)-special described some of their applications. In paper, using the (p,q)-cosine (p,q)-sine we consider a novel ki...
Cangul-Ozden-Simsek[1] constructed the q-Genocchi numbers of high order using a fermionic p-adic integral on Zp, and gave Witt’s formula and the interpolation functions of these numbers. In this paper, we present the generalization of the higher order q-Euler numbers and q-Genocchi numbers of Cangul-Ozden-Simsek. We define q-extensions of w-Euler numbers and polynomials, and w-Genocchi numbers ...
The derivative polynomials introduced by Knuth and Buckholtz in their calculations of the tangent and secant numbers are extended to a multivariable q– environment. The n-th q-derivatives of the classical q-tangent and q-secant are each given two polynomial expressions. The first polynomial expression is indexed by triples of integers, the second by compositions of integers. The functional rela...
In this paper, we study the transcendental entire solutions for nonlinear differential-difference equations of forms: $ \begin{eqnarray*} f^{2}(z)+\widetilde{\omega} f(z)f'(z)+q(z)e^{Q(z)}f(z+c) = u(z)e^{v(z)}, \end{eqnarray*} and class="disp_formula">$ f^{n}(z)+\omega f^{n-1}(z)f'(z)+q(z)e^{Q(z)}f(z+c) p_{1}e^{\lambda_{1} z}+p_{2}e^{\lambda_{2} z}, \quad n\g...
The generalized Bernstein basis in the space Πn of polynomials of degree at most n, being an extension of the q-Bernstein basis introduced recently by G.M. Phillips, is given by the formula (see S. Lewanowicz & P. Woźny, BIT 44 (2004), 63–78) Bn i (x;ω| q) := 1 (ω; q)n [ n i ] q x (ωx−1; q)i (x; q)n−i (i = 0, 1, . . . , n). We give explicitly the dual basis functions Dn k (x; a, b, ω| q) for th...
The quantum integer [n]q is the polynomial 1+q+q+ · · ·+q. Two sequences of polynomials U = {un(q)}∞n=1 and V = {vn(q)} ∞ n=1 define a linear addition rule ⊕ on a sequence F = {fn(q)}∞n=1 by fm(q) ⊕ fn(q) = un(q)fm(q)+vm(q)fn(q). This is called a quantum addition rule if [m]q⊕[n]q = [m + n]q for all positive integers m and n. In this paper all linear quantum addition rules are determined, and a...
A four-parameter family of multivariable big q-Jacobi polynomials and a threeparameter family of multivariable little q-Jacobi polynomials are introduced. For both families, full orthogonality is proved with the help of a second-order q-difference operator which is diagonalized by the multivariable polynomials. A link is made between the orthogonality measures and R. Askey’s q-extensions of Sel...
We describe a Mathematica package for dealing with q-holonomic sequences and power series. The package is intended as a q-analogue of the Maple package gfun and the Mathematica package GeneratingFunctions. It provides commands for addition, multiplication, and substitution of these objects, for converting between various representations (q-differential equations, q-recurrence equations, q-shift...
The main purpose of this paper is to introduce and investigate a new class of generalized Bernoulli polynomials and Euler polynomials based on the q-integers. The q-analogues of well-known formulas are derived. The q-analogue of the Srivastava–Pintér addition theorem is obtained. We give new identities involving q-Bernstein polynomials.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید