نتایج جستجو برای: quasi gorenstein module
تعداد نتایج: 150656 فیلتر نتایج به سال:
An R-module M is called epi-retractable if every submodule of MR is a homomorphic image of M. It is shown that if R is a right perfect ring, then every projective slightly compressible module MR is epi-retractable. If R is a Noetherian ring, then every epi-retractable right R-module has direct sum of uniform submodules. If endomorphism ring of a module MR is von-Neumann regular, then M is semi-...
Gorenstein rings are important to mathematical areas as diverse as algebraic geometry, where they encode information about singularities of spaces, and homotopy theory, through the concept of model categories. In consequence, the study of Gorenstein rings has led to the advent of a whole branch of homological algebra, known as Gorenstein homological algebra. This paper solves one of the open pr...
This is the first paper in a series to study vertex algebra-like objects arising from infinite-dimensional quantum groups (quantum affine algebras and Yangians). In this paper we lay a foundation for this study. We formulate and study notions of quasi module and S-quasi module for a G1-vertex algebra V , where S is a quantum Yang-Baxter operator on V . We also formulate and study a notion of qu...
In this paper we introduce the notions of uniformly quasi-primary ideals and uniformly classical quasi-primary submodules that generalize the concepts of uniformly primary ideals and uniformly classical primary submodules; respectively. Several characterizations of classical quasi-primary and uniformly classical quasi-primary submodules are given. Then we investigate for a ring $R$, when any fi...
let $mathcal {a}$ be an abelian category with enough projective objects and $mathcal {x}$ be a full subcategory of $mathcal {a}$. we define gorenstein projective objects with respect to $mathcal {x}$ and $mathcal{y}_{mathcal{x}}$, respectively, where $mathcal{y}_{mathcal{x}}$=${ yin ch(mathcal {a})| y$ is acyclic and $z_{n}yinmathcal{x}}$. we point out that under certain hypotheses, these two g...
an r-module m is called epi-retractable if every submodule of mr is a homomorphic image of m. it is shown that if r is a right perfect ring, then every projective slightly compressible module mr is epi-retractable. if r is a noetherian ring, then every epi-retractable right r-module has direct sum of uniform submodules. if endomorphism ring of a module mr is von-neumann regular, then m is semi-...
Unlike the Gorenstein projective and injective dimensions, the majority of results on the Gorenstein flat dimension have been established only over Noetherian (or coherent) rings. Naturally, one would like to generalize these results to any associative ring. In this direction, we show that the Gorenstein flat dimension is a refinement of the classical flat dimension over any ring; and we invest...
Following the well-established terminology in commutative algebra, any (not necessarily commutative) finite-dimensional local algebra A $A$ with radical J $J$ will be said to short provided 3 = 0 $J^3 0$ . As case, we show: If a has an indecomposable non-projective Gorenstein-projective module M $M$ , then either is self-injective (so that all modules are Gorenstein-projective) and then, of cou...
Let I denote an ideal of a local Gorenstein ring (R, m). Then we show that the local cohomology module H I (R), c = height I, is indecomposable if and only if V (Id) is connected in codimension one. Here Id denotes the intersection of the highest dimensional primary components of I. This is a partial extension of a result shown by Hochster and Huneke in the case I the maximal ideal. Moreover th...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید