نتایج جستجو برای: rainbow arithmetic progression
تعداد نتایج: 232746 فیلتر نتایج به سال:
lfh and k are positive integers there exists N(h, k) such that whenever N ^ N(h, k), and the integers 1,2,...,N are divided into h subsets, at least one must contain an arithmetic progression of length k. This is the famous theorem of van der Waerden [10], dating from 1927. The proof of this uses multiple nested inductions, which result in extremely weak bounds for N{h,k). We shall define Bk to...
Given an integer q ≥ 2 and a number θ ∈ (0, 1], consider the collection of all subsets of Zq := Z/qZ having at least θq elements. Among the sets in this collection, suppose S is any one having the minimal number of three-term arithmetic progressions, where in our terminology a three-term arithmetic progression is a triple (x, y, z) ∈ S3 satisfying x + y ≡ 2z (mod q). Note that this includes tri...
is a (nonconstant) arithmetic progression of positive integers. We consider a general binary quadratic form ax2 + bxy + cy' ( a , b , c E Z ) and ask the question "Can the form ax' + hxy + ry' represen1 every inleger in 1he arithmetic progression kNo + 1 for any natural numbers k and l?" In a sampling of books containing a discussion of binary quadratic forms [2]-[9], we did not find this qustl...
Let N denote the set of all nonnegative integers. Let k ≥ 3 be an integer and A0 = {a1, . . . , at} (a1 < . . . < at) be a nonnegative set which does not contain an arithmetic progression of length k. We denote A = {a1, a2, . . . } defined by the following greedy algorithm: if l ≥ t and a1, . . . , al have already been defined, then al+1 is the smallest integer a > al such that {a1, . . . , al}...
A celebrated theorem of Erdős and Selfridge [14] states that the product of consecutive positive integers is never a perfect power. A more recent and equally appealing result is one of Darmon and Merel [11] who proved an old conjecture of Dénes to the effect that there do not exist three consecutive nth powers in arithmetic progression, provided n 3. One common generalization of these problems ...
We investigate a method of ordering pixels (the elements of a rectangular matrix) based on an arithmetic progression with wrap-around (modular arithmetic). For appropriate choices of the progression's parameters based on a generalization of Fibonacci numbers and the golden mean, we nd equidis-tributed collections of pixels formed by subin-tervals of the pixel progression or \shuue." We illustra...
We consider those positive integers that are not representable as linear combinations of terms of a generalized arithmetic progression with nonnegative integer coefficients. To do this, we make use of the numerical semigroup generated by a generalized arithmetic progression. The number of integers nonrepresentable by such a numerical semigroup is determined as well as that of its dual. In addit...
We consider arithmetic progressions on Pellian equations x2 − d y2 = m, i.e. integral solutions such that the y-coordinates are in arithmetic progression. We construct explicit infinite families of d,m for which there exists a five-term arithmetic progression in the y-coordinate, and we prove the existence of infinitely many pairs d,m parametrized by the points of an elliptic curve of positive ...
We present a method of ordering pixels (the elements of a rectangular matrix) based on an arithmetic progression with wrap-around (modular arithmetic). For appropriate choices of the progression’s parameters based on a generalization of Fibonacci numbers and the golden mean, we achieve uniformly distributed collections of pixels formed by intervals of the pixel progression or “shuffle.” We illu...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید