نتایج جستجو برای: symmetric polynomials
تعداد نتایج: 116300 فیلتر نتایج به سال:
We define a family of polynomials of the form ∑ f(σ)x1,σ(1) · · ·xn,σ(n) in terms of the Kazhdan-Lusztig basis {C′ w(1) |w ∈ Sn} for the symmetric group algebra C[Sn]. Using this family, we obtain nonnegativity properties of polynomials of the form ∑ cI,I′∆I,I′(x)∆I,I′(x). In particular, we show that the application of certain of these polynomials to Jacobi-Trudi matrices yields symmetric funct...
Elementary symmetric polynomials can be thought of as derivative polynomials of En(x) = ∏ i=1,...,n xi. Their associated hyperbolicity cones give a natural sequence of relaxations for R+. We establish a recursive structure for these cones, namely, that the coordinate projections of these cones are themselves hyperbolicity cones associated with elementary symmetric polynomials. As a consequence ...
G. E. Murphy showed in 1983 that the centre of every symmetric group algebra has an integral basis consisting of a specific set of monomial symmetric polynomials in the Jucys–Murphy elements. While we have shown in earlier work that the centre of the group algebra of S3 has exactly three additional such bases, we show in this paper that the centre of the group algebra of S4 has infinitely many ...
We study the problem of representing symmetric Boolean functions as symmetric polynomials over Zm. We show an equivalence between such representations and simultaneous communication protocols. Computing a function f on 0 1 inputs with a polynomial of degree d modulo pq is equivalent to a two player simultaneous protocol for computing f where one player is given the first dlogp de digits of the ...
The Generalized Lax Conjecture asks whether every hyperbolicity cone is a section of a semidefinite cone of sufficiently high dimension. We prove that the space of hyperbolicity cones of hyperbolic polynomials of degree d in n variables contains (n/d) pairwise distant cones in the Hausdorff metric, and therefore that any semidefinite representation of such polynomials must have dimension at lea...
In this paper, we consider some cubic near-Hamiltonian systems obtained from perturbing the symmetric cubic Hamiltonian system with two symmetric singular points by cubic polynomials. First, following Han [2012] we develop a method to study the analytical property of the Melnikov function near the origin for near-Hamiltonian system having the origin as its elementary center or nilpotent center....
We consider symmetric (as well as multi-symmetric) real algebraic varieties and semi-algebraic sets, as well as symmetric complex varieties in affine and projective spaces, defined by polynomials of fixed degrees. We give polynomial (in the dimension of the ambient space) bounds on the number of irreducible representations of the symmetric group which acts on these sets, as well as their multip...
In this note, we study the notion of structured pseudospectra. We prove that for Toeplitz, circulant and symmetric structures, the structured pseudospectrum equals the unstructured pseudospectrum. We show that this is false for Hermitian and skew-Hermitian structures. We generalize the result to pseudospectra of matrix polynomials. Indeed, we prove that the structured pseudospectrum equals the ...
A q-analogue of the type A Dunkl operator and integral kernel We introduce the q-analogue of the type A Dunkl operators, which are a set of degree–lowering operators on the space of polynomials in n variables. This allows the construction of raising/lowering operators with a simple action on non-symmetric Macdonald polynomials. A bilinear series of non-symmetric Macdonald polynomials is introdu...
In this paper, we define a new form of Carlitz’s type degenerate twisted (p,q)-Euler numbers and polynomials by generalizing the Euler polynomials, q-Euler polynomials. Some interesting identities, explicit formulas, symmetric properties, connection with are obtained. Finally, investigate zeros using computer.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید