نتایج جستجو برای: unitary cayley graphs
تعداد نتایج: 115542 فیلتر نتایج به سال:
In this paper, we have obtained the total chromatic number of some classes Cayley graphs, odd graphs and mock threshold graphs.
The isomorphism problem of Cayley graphs has been well studied in the literature, such as characterizations of CI (DCI)-graphs and CI (DCI)-groups. In this paper, we generalize these to vertex-transitive graphs and establish parallel results. Some interesting vertex-transitive graphs are given, including a first example of connected symmetric non-Cayley non-GI-graph. Also, we initiate the study...
A graph is one-regular if its automorphism group acts regularly on the arc set. In this paper, we construct a new infinite family of one-regular Cayley graphs of any prescribed valency. In fact, for any two positive integers , k 2 except for ( , k) ∈ {(2,3), (2,4)}, the Cayley graph Cay(Dn,S) on dihedral groups Dn = 〈a, b | an = b2 = (ab)2 = 1〉 with S = {a1+ +···+ t b | 0 t k − 1} and n = ∑k−1 ...
In a recent paper (arXiv:1505.01475 ) Estélyi and Pisanski raised a question whether there exist vertex-transitive Haar graphs that are not Cayley graphs. In this note we construct an infinite family of trivalent Haar graphs that are vertex-transitive but non-Cayley. The smallest example has 40 vertices and is the well-known Kronecker cover over the dodecahedron graph G(10, 2), occurring as the...
Nathanson was the pioneer in introducing the concepts of Number Theory, particularly, the “Theory of Congruences” in Graph Theory. Thus he paved the way for the emergence of a new class of graphs, namely “Arithmetic Graphs”. Cayley graphs are another class of graphs associated with the elements of a group. If this group is associated with some arithmetic function then the Cayley graph becomes a...
Cayley graphs arise naturally in computer science, in the study of word-hyperbolic groups and automatic groups, in change-ringing, in creating Escher-like repeating patterns in the hyperbolic plane, and in combinatorial designs. Moreover, Babai has shown that all graphs can be realized as an induced subgraph of a Cayley graph of any sufficiently large group. Since the 1984 survey of results on ...
In this paper, we focus on the design of network topology to achieve fast information distribution. We present the information distribution performance of Borel Cayley graphs, a family of pseudo-random graphs, is far superior than that of other well-known graph families. To demonstrate the effectiveness of this pseudo-random approach, we compare the convergence speed of the average consensus pr...
Nathanson was the pioneer in introducing the concepts of Number Theory, particularly, the “Theory of Congruences” in Graph Theory. Thus he paved the way for the emergence of a new class of graphs, namely “Arithmetic Graphs”. Cayley graphs are another class of graphs associated with the elements of a group. If this group is associated with some arithmetic function then the Cayley graph becomes a...
We explore the geometry of the Cayley graphs of the lamplighter groups and a wide range of wreath products. We show that these groups have dead end elements of arbitrary depth with respect to their natural generating sets. An element w in a group G with finite generating set X is a dead end element if no geodesic ray from the identity to w in the Cayley graph Γ(G, X) can be extended past w. Add...
The Immerman-Szelepcsenyi Theorem uses an algorithm for co-stconnectivity based on inductive counting to prove that NLOGSPACE is closed under complementation. We want to investigate whether counting is necessary for this theorem to hold. Concretely, we show that Nondeterministic Jumping Graph Autmata (ND-JAGs) (pebble automata on graphs), on several families of Cayley graphs, are equal in power...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید