نتایج جستجو برای: unmixed graph
تعداد نتایج: 198434 فیلتر نتایج به سال:
the energy of a graph is equal to the sum of the absolute values of its eigenvalues. two graphs of the same order are said to be equienergetic if their energies are equal. we point out the following two open problems for equienergetic graphs. (1) although it is known that there are numerous pairs of equienergetic, non-cospectral trees, it is not known how to systematically construct any such pa...
Dissociation of mixed trypsin (bovine plus porcine trypsin) complexes with chicken ovoinhibitor was used to investigate the nonequivalence of the two binding sites for trypsin on the inhibitor. Previous work has shown that 1 mol of trypsin dissociates much more rapidly than the 2nd from unmixed trypsin complexes, those containing 2 mol of one kind of trypsin, bovine or porcine, per mol of inhib...
The main question of this paper is: What happens to sparse resultants under composition? More precisely, let f1, . . . , fn be homogeneous sparse polynomials in the variables y1, . . . , yn and g1, . . . , gn be homogeneous sparse polynomials in the variables x1, . . . , xn. Let fi ◦ (g1, . . . , gn) be the sparse homogeneous polynomial obtained from fi by replacing yj by gj . Naturally a quest...
let $r$ be a ring with unity. the undirected nilpotent graph of $r$, denoted by $gamma_n(r)$, is a graph with vertex set ~$z_n(r)^* = {0neq x in r | xy in n(r) for some y in r^*}$, and two distinct vertices $x$ and $y$ are adjacent if and only if $xy in n(r)$, or equivalently, $yx in n(r)$, where $n(r)$ denoted the nilpotent elements of $r$. recently, it has been proved that if $r$ is a left ar...
given a non-abelian finite group $g$, let $pi(g)$ denote the set of prime divisors of the order of $g$ and denote by $z(g)$ the center of $g$. thetextit{ prime graph} of $g$ is the graph with vertex set $pi(g)$ where two distinct primes $p$ and $q$ are joined by an edge if and only if $g$ contains an element of order $pq$ and the textit{non-commuting graph} of $g$ is the graph with the vertex s...
let $g$ be a non-abelian finite group. in this paper, we prove that $gamma(g)$ is $k_4$-free if and only if $g cong a times p$, where $a$ is an abelian group, $p$ is a $2$-group and $g/z(g) cong mathbb{ z}_2 times mathbb{z}_2$. also, we show that $gamma(g)$ is $k_{1,3}$-free if and only if $g cong {mathbb{s}}_3,~d_8$ or $q_8$.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید