نتایج جستجو برای: bayesian estimator

تعداد نتایج: 110269  

1999
R. - D. REISS M. THOMAS

For estimating the shape parameter of Paretian excess claims, certain Bayesian estimators, which are closely related to the Hill estimator, have been suggested in the insurance literature. It turns out that these estimators may have a poor performance just as the Hill estimator if a certain location parameter is unequal to zero in the Paretian modeling. In an alternative formulation this means ...

2014
Zhuang Ma Dean P. Foster Robert A. Stine

We develop an adaptive monotone shrinkage estimator for regression models with the following characteristics: i) dense coefficients with small but important effects; ii) a priori ordering that indicates the probable predictive importance of the features. We capture both properties with an empirical Bayes estimator that shrinks coefficients monotonically with respect to their anticipated importa...

2016
Salima El Kolei Florian Pelgrin

We study a parametric approach for hidden discrete-time diffusion models based on contrast minimization and deconvolution. This approach leads to estimate a large class of stochastic models with nonlinear drift and nonlinear diffusion. It can be applied, for example, for ecological and financial state space models. After proving consistency and asymptotic normality of the estimator, leading to ...

Journal: :Computer Vision, Graphics, and Image Processing 1990
David C. Knill Daniel J. Kersten

The problem of determining surface shape from shading is formulated in terms of Bayesian estimation. The goal is to select an estimate of surface shape that best fits some criterion on the posterior probability of the surface conditional on the image data. This conditional probability is a function of the imaging function and the prior probability of the surface. A gradient descent technique is...

Journal: :Entropy 2013
Ron Mittelhammer Nicholas Scott Cardell Thomas L. Marsh

Maximum entropy methods of parameter estimation are appealing because they impose no additional structure on the data, other than that explicitly assumed by the analyst. In this paper we prove that the data constrained GME estimator of the general linear model is consistent and asymptotically normal. The approach we take in establishing the asymptotic properties concomitantly identifies a new c...

2003
Mattias Villani MATTIAS VILLANI

A neglected aspect of the otherwise fairly well developed Bayesian analysis of cointegration is the point estimation of the cointegration space. It is pointed out here that, due to the well known non-identification of the cointegration vectors, the parameter space is not an inner product space and conventional Bayes estimators therefore stand without their usual decision theoretic foundation. W...

2010
Martin Raphan Eero P. Simoncelli

A number of recent algorithms in signal and image processing are based on the empirical distribution of localized patches. Here, we develop a nonparametric empirical Bayesian estimator for recovering an image corrupted by additive Gaussian noise, based on fitting the density over image patches with a local exponential model. The resulting solution is in the form of an adaptively weighted averag...

2007
Z. I. Botev

Suppose we are given empirical data and a prior density about the distribution of the data. We wish to construct a nonparametric density estimator that incorporates the prior information. We propose an estimator that allows for the incorporation of prior information in the density estimation procedure within a non-Bayesian framework. The prior density is mixed with the available empirical data ...

1994
Steven M. Lewis Adrian E. Raftery

The key quantity needed for Bayesian hypothesis testing and model selection is the marginal likelihood for a model, also known as the integrated likelihood, or the marginal probability of the data. In this paper we describe a way to use posterior simulation output to estimate marginal likelihoods. We describe the basic Laplace-Metropolis estimator for models without random eeects. For models wi...

Journal: :Computational Statistics & Data Analysis 2012
Shuowen Hu D. S. Poskitt Xibin Zhang

Kernel density estimation is an important technique for understanding the distributional properties of data. Some investigations have found that the estimation of a global bandwidth can be heavily affected by observations in the tail. We propose to categorize data into lowand high-density regions, to which we assign two different bandwidths called the low-density adaptive bandwidths. We derive ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید