نتایج جستجو برای: bulk heterojunction
تعداد نتایج: 82884 فیلتر نتایج به سال:
Donor-acceptor-acceptor (D-A-A) type of 1,8–naphthalimides as Non-fullerene Small Molecule Acceptors for Bulk Heterojunction Solar Cells Prabhat Gautama, Rahul Sharmaa, Rajneesh Misraa* M. L. Keshtovb, S. A. Kuklinb and Ganesh D. Sharmac* aDepartment of Chemistry, Indian Institute of Technology Indore, Indore 45, India. bInstitute of Organoelement Compounds of the Russian Academy of Sciences, V...
We report a general strategy for fine-tuning the bandgap of donor-acceptor-donor based organic molecules by modulating the electron-donating ability of the donor moiety by changing the benzochalcogenophene donor groups from benzothiophenes to benzoselenophenes to benzotellurophenes. These molecules show red-shifts in absorption and external quantum efficiency maxima from sulfur to selenium to t...
The nitration of 4,7-dibromo-2,1,3-benzothiadiazole was modified by using CF(3)SO(3)H and HNO(3) as the nitrating agent, and the related yield was improved greatly. On the basis of this improvement, two new small band gap polymers, P1TPQ and P3TPQ, were developed. Bulk heterojunction solar cells based on P3TPQ and [6,6]-phenyl-C(71)-butyric acid methyl ester exhibit interesting results with a p...
Related Articles Room-temperature single molecular memory Appl. Phys. Lett. 100, 053101 (2012) Coherently controlled molecular junctions J. Chem. Phys. 136, 044107 (2012) Efficiency improvement in fullerene-layer-inserted organic bulk-heterojunction solar cells J. Appl. Phys. 111, 023104 (2012) Probing transconductance spatial variations in graphene nanoribbon field-effect transistors using sca...
Single-junction organic solar cells have reached a power conversion efficiency of 20% with narrow bandgap non-fullerene electron acceptor materials such as Y6, well large band gap donor and their derivatives. The improvement single-junction is result highly efficient light harvesting in the near-infrared range reduced energy losses most promising active layer layout currently available, Bulk-He...
Measuring the current-voltage characteristic of organic bulk heterojunction solar devices sometimes reveals an S-shaped deformation. We qualitatively produce this behavior by a numerical device simulation assuming a reduced surface recombination. Furthermore we show how to experimentally create these double diodes by applying an oxygen plasma etch on the indium-tin-oxide anode. Restricted charg...
A tandem solar cell device whose sub-cells are fabricated exclusively from small molecules (SMs) through both solution-processed and vacuum-processed deposition techniques is described. The front sub-cell's active layer consists of a bulk heterojunction (BHJ) DPP(TBFu)2:PC70BM device while the back cell has a typical bilayer structure employing a 2,4-bis[4-(N,N-diisobutylamino)-2,6-dihydroxyphe...
The photovoltaic conversion efficiency for near-infrared (NIR) sunlight is improved successfully by dye sensitization of bulk heterojunction polymer solar cells, in which the active layer was prepared by a ternary blend of poly(3-hexylthiophene), a fullerene derivative (1-(3-methoxycarbonyl)propyl-1-phenyl-[6,6]-methanofullerene), and an NIR dye, silicon phthalocyanine bis(trihexylsilyl oxide)....
Tandem structures can boost the efficiency of organic solar cell to more than 15%, compared to the 10% limit of single layer bulk heterojunction devices. Design and fabricating of intermediate layers plays a very important role to achieve high device performance. This article will review the main experimental progresses of tandem organic solar cells, and focus on the intermediate layers (charge...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید