We define and study a spatial (infinite-dimensional) counterpart of Stirling numbers. In classical combinatorics, the Pochhammer symbol $(m)_n$ can be extended from natural number $m\in\mathbb N$ to falling factorials $(z)_n=z(z-1)\dotsm (z-n+1)$ an argument $z$ $\mathbb F=\mathbb R\text{ or }\mathbb C$, numbers first second kinds are coefficients expansions $(z)_n$ through $z^k$, $k\leq n$ vic...