A divisibility test of Arend Heyting, for polynomials over a
eld in an intuitionistic setting, may be thought of as a kind of division algorithm. We show that such a division algorithm holds for divisibility by polynomials of content 1 over any commutative ring in which nilpotent elements are zero. In addition, for an arbitary commutative ring R, we characterize those polynomials g such that t...