Proposition 1. M is injective if and only if its singular value decomposition M = UDV H has a V that is square and invertible. In this case, MM is invertible and M = (MHM)−1MH . Proof. Let M be an r × c matrix. Suppose that M is injective, so that rank(M) = c because the kernal is zero. Then D is a c × c matrix and so V H is also c× c. V H must already be injective (lest M not be injective), an...