نتایج جستجو برای: direct product graphs
تعداد نتایج: 781541 فیلتر نتایج به سال:
Let X and Y be infinite graphs, such that the automorphism group of X is nonamenable, and the automorphism group of Y has an infinite orbit. We prove that there is no automorphism-invariant measure on the set of spanning trees in the direct product X × Y . This implies that the minimal spanning forest corresponding to i.i.d. edge-weights in such a product, has infinitely many connected componen...
The product dimension of a graph G is defined as the minimum natural number l such that G is an induced subgraph of a direct product of l complete graphs. In this paper we study the product dimension of forests, bounded treewidth graphs and k-degenerate graphs. We show that every forest on n vertices has product dimension at most 1.441 log n + 3. This improves the best known upper bound of 3 lo...
a vertex irregular total k-labeling of a graph g with vertex set v and edge set e is an assignment of positive integer labels {1, 2, ..., k} to both vertices and edges so that the weights calculated at vertices are distinct. the total vertex irregularity strength of g, denoted by tvs(g)is the minimum value of the largest label k over all such irregular assignment. in this paper, we study the to...
let $g=(v,e)$ be a connected simple graph. a labeling $f:v to z_2$ induces two edge labelings $f^+, f^*: e to z_2$ defined by $f^+(xy) = f(x)+f(y)$ and $f^*(xy) = f(x)f(y)$ for each $xy in e$. for $i in z_2$, let $v_f(i) = |f^{-1}(i)|$, $e_{f^+}(i) = |(f^{+})^{-1}(i)|$ and $e_{f^*}(i) = |(f^*)^{-1}(i)|$. a labeling $f$ is called friendly if $|v_f(1)-v_f(0)| le 1$. for a friendly labeling $f$ of...
Let A be the collection of groups which can be assembled from infinite cyclic groups using the binary operations free and direct product. These groups can be described in several ways by graphs. The group (Z ∗Z)×(Z ∗Z) has been shown by [1] to have a rich subgroup structure. In this article we examine subgroups of A–groups. DefineA to be the smallest class of groups which contains the infinite ...
A homogeneous factorisation of a digraph Γ consists of a partition P = {P1, . . . , Pk} of the arc set AΓ and two vertex-transitive subgroups M 6 G 6 Aut(Γ) such that M fixes each Pi setwise while G leaves P invariant and permutes its parts transitively. Given two graphs Γ1 and Γ2 we consider several ways of taking a product of Γ1 and Γ2 to form a larger graph, namely the direct product, cartes...
Given a graph G with n vertices and an Abelian group A of order n, an A-distance antimagic labelling of G is a bijection from V (G) to A such that the vertices of G have pairwise distinct weights, where the weight of a vertex is the sum (under the operation of A) of the labels assigned to its neighbours. An A-distance magic labelling of G is a bijection from V (G) to A such that the weights of ...
in this paper we study a representation of a fuzzy subgroup $mu$ of a group $g$, as a product of indecomposable fuzzy subgroups called the components of $mu$. this representation is unique up to the number of components and their isomorphic copies. in the crisp group theory, this is a well-known theorem attributed to remak, krull, and schmidt. we consider the lattice of fuzzy subgroups and som...
Let G,H be graphs and G?H represent a particular graph product of G H. We define im(G) to the largest t such that has Kt-immersion ask: given im(G)=t im(H)=r, how large is im(G?H)? Best possible lower bounds are provided when ? Cartesian or lexicographic product, conjecture offered for each direct strong products, along with some partial results.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید