نتایج جستجو برای: fenton like reaction
تعداد نتایج: 1043566 فیلتر نتایج به سال:
Iron is an essential metal for living organisms but its level must be strictly controlled in cells, because ferrous ion induces toxicity by generating highly active reactive oxygen, hydroxyl radicals, through the Fenton reaction. In addition, ferric ion shows low solubility under physiological conditions. To overcome these obstacles living organisms possess Ferritin superfamily proteins that ar...
A sample of mesoporous TiO2 (MT, specific surface area = 150 m2·g−1) and two samples of MT containing 2.5 wt.% Fe were prepared by either direct synthesis doping (Fe2.5-MTd) or impregnation (Fe2.5-MTi). Commercial TiO2 (Degussa P25, specific surface area = 56 m2·g−1) was used both as a benchmark and as a support for impregnation with either 0.8 or 2.5 wt.% Fe (Fe0.80-IT and Fe2.5-IT). The powde...
The Gram-negative commensal bacterium nontypeable Haemophilus influenzae (NTHI) can cause respiratory tract diseases that include otitis media, sinusitis, exacerbations of chronic obstructive pulmonary disease, and bronchitis. During colonization and infection, NTHI withstands oxidative stress generated by reactive oxygen species produced endogenously, by the host, and by other copathogens and ...
The heterogeneous photo-Fenton degradation of coomasie brilliant blue R–250 under visible light has been investigated using copper modified iron oxide, which has been prepared by coprecipitation method and characterized by IR spectroscopy, scanning electron microscopy and X-ray diffraction. The rate of photocatalytic degradation of dye follows pseudo-first order kinetics. The effects of various...
UNLABELLED Iron and copper toxicity has been presumed to involve the formation of hydroxyl radical (*OH) from H2O2 in the Fenton reaction. The aim of this study was to verify that Fe2+-O2 and Cu+-O2 chemistry is capable of generating *OH in the quasi physiological environment of Krebs-Henseleit buffer (KH), and to compare the ability of the Fe2+-O2 system and of the Fenton system (Fe2+ + H2O2) ...
Background Zwitterionic molecules have been widely studied as coating materials for preparing anti-fouling surfaces because they possess strong hydration properties that can resist non-specific protein adsorption. Numerous studies on surface modification using zwitterionic molecules have been investigated, such as electrochemically mediated and photoinitiated radical polymerization. However, th...
MoS2 has garnered considerable attention as an exceptional co-catalyst that is capable of significantly enhancing the efficiency H2O2 decomposition in advanced oxidation processes (AOPs). This improvement allows for a reduction required amounts and Fe2+. In this study, we investigated cyclic durability photo-Fenton catalysts, focusing on degradation pollutants through introduction PPy into hete...
The necessity and challenges associated with the new-type photocatalytic Fenton-like system was introduced, followed by discussion of innovation breakthrough self-cyclable photo-Fenton in this highlights. An inspiration towards new-generation decentralized sustainable environment treatment device is expected.
Fe2V4O13 is prepared and characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), UV-diffuse reflectance spectroscopy (UV-DRS), high resolution scanning electron microscopy (HR-SEM) using energy dispersive X-ray spectroscopy (EDX) analysis. The hetero-Fenton catalyst can be used to mineralize Methyl Orange (MO) under UV-A light. The mineralization rate is influenced by hydr...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید