نتایج جستجو برای: fractional differintegral operator
تعداد نتایج: 151697 فیلتر نتایج به سال:
In [10] a “direct” stochastic transfer principle was introduced, which represented multiple integrals with respect to fractional Brownian motion in terms of multiple integrals with respect to standard Brownian motion. The method employed in [10] involved an operator Γ (n) H , mapping a class of functions LH to L 2. However, the operator does not map LH onto L 2. Hence Γ (n) H is not invertible....
In recent years, notable contributions have been made to both the theory and applications of the fractional differential equations. These equations are increasingly used to model problems in research areas as diverse as population dynamics, mechanical systems, fiber optics, control, chaos, fluid mechanics, continuous-time random walks, anomalous diffusive and subdiffusive systems, unification o...
We introduce discrete fractional sum equations and inequalities. We obtain the equivalence of an initial value problem for a discrete fractional equation and a discrete fractional sum equation. Then we give an explicit solution to the linear discrete fractional sum equation. This allows us to state and prove an analogue of Gronwall's inequality on discrete fractional calculus. We employ a nabla...
and Dn denotes the derivative operator ∂/∂x1, . . . ,∂xn. The operators in (1.1) provide multidimensional generalizations to the well-known one-dimensional Riemann-Liouville andWeyl fractional integral operators defined in [5] (see also [1]). The paper [7] considers several formulas and interesting properties of (1.1). By invoking the Gauss hypergeometric function 2F1(α,β;γ;x), the following ge...
We aim to present some formulas for the Saigo hypergeometric fractional integral and differential operators involving the generalized Mathieu series Sμ(r), which are expressed in terms of the Hadamard product of the generalized Mathieu series Sμ(r) and the Fox–Wright function pΨq(z). Corresponding assertions for the classical Riemann–Liouville and Erdélyi–Kober fractional integral and different...
and Applied Analysis 3 2. Preliminaries In this section, we present definitions and properties of generalized fractional operators. As particular cases, by choosing appropriate kernels, these operators are reduced to standard fractional integrals and fractional derivatives. Other nonstandard kernels can also be considered as particular cases. For more on the subject of generalized fractional ca...
In this paper, we prove Hermite-Hadamard type inequalities for r-preinvex functions via fractional integrals. The results presented here would provide extensions of those given in earlier works.
We give a natural definition of the Morrey spaces for Radon measures which may be non-doubling but satisfy the growth condition. In these spaces we investigate the behavior of the maximal operator, the fractional integral operator, the singular integral operator and their vector-valued extensions.
We establish some sharp maximal function inequalities for the Toeplitz type operator, which is related to certain fractional singular integral operator with general kernel. These results are helpful to investigate the boundedness of the operator on Lebesgue, Morrey and Triebel–Lizorkin spaces respectively.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید