نتایج جستجو برای: functionally graded nano beam
تعداد نتایج: 237083 فیلتر نتایج به سال:
Recent works done by nano-engineers and nano-sciences about mechanical behavior of nano-plates including bending, buckling and vibration response were reviewed. The authors used non-classical elasticity theories to explain these behaviors of plate structures. Some of them employed Hamilton’s principle along with stain gradient theory, nonlocal theory, surface theory and couple stress theory to ...
in this paper, eringen’s nonlocal elasticity and timoshenko beam theories are implemented to analyze the bending vibration for non-uniform nano-beams. the governing equations and the boundary conditions are derived using hamilton’s principle. a generalized differential quadrature method (gdqm) is utilized for solving the governing equations of non-uniform timoshenko nano-beam for pinned-pinned...
Free vibration analysis of functionally graded rectangular plates via differential quadrature method
In this study, free vibration of functionally graded rectangular plates for various types of boundary conditions has been presented . The properties of the plate are assumed as power- law form along the thickness direction , while poisson's ratio is kept constant. the linear vibration equations of functionally graded rectangular plates are derived based on first order shear deformation theory b...
Although titanium/hydroxyapatite composite is an attractive material for dental implants, it would be more useful if it could be produced as a functionally graded material (FGM). In this paper, microstructure and microhardness of a five-layer titanium/hydroxyapatite functionally graded material has been investigated. First, titanium and hydroxyapatite (HA) powders were mixed with the Ti to HA v...
Modified couple stress theory is applied to study of temperature effects on free vibration of Timoshenko functionally graded microbeams. Due to the interatomic and microstructural reactions of the structures in micro scale, the dynamic behavior of the microbeam is predicted more accurate applying the couple stress theory. Both of the simply supported and clamped boundary conditions are assumed ...
In this article, mechanical buckling analysis of tapered beams having constant width and variable thickness, made of two-dimensional functionally graded materials is studied. The beam is assumed to be made of metal and ceramic, where their volume fractions vary in both longitudinal and thickness directions based on the power law. The beam is generally subjected to combined concentrated and dist...
This research develops thermo-elastic analysis of a functionally graded cylinder under thermo-mechanical loadings. Heat conduction equation in cylindrical coordinate system is solved. Thermal conductivity coefficient is graded along the radial direction. By considering a symmetric distribution of temperature, loading and boundary conditions, strain-displacement and stress-strain relations can b...
In this paper, dynamic behavior of a functionally graded cantilever micro-beam and its pull-in instability, subjected to simultaneous effects of a thermal moment and nonlinear electrostatic pressure, has been studied. It has been assumed that the top surface is made of pure metal and the bottom surface from a metal–ceramic mixture. The ceramic constituent percent of the bottom surface ranges fr...
In this study, the torsional stability analysis is presented for thin cylindrical with the functionally graded (FG) middle layer resting on the Winker elastic foundation. The mechanical properties of functionally graded material (FGM) are assumed to be graded in the thickness direction according to a simple power law and exponential distributions in terms of volume fractions of the constituents...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید