نتایج جستجو برای: heat recovery nanofluid

تعداد نتایج: 399405  

The effect of thermal and solutal buoyancy induced by a discrete source of heat and mass transfer in a square duct under the influence of magnetic field, especially at the turbulent regime for the first time is reported. Al2O3/water nanofluid is used with constant heat flux from three discrete heat sources. In the present study, the effects of Reynolds number (100 to 3000), particle volume frac...

In the present study, the effective parameters of water-Al2O3 nanofluid flowing in flat tubes are investigated using the EFAST Sensitivity Analysis (SA) method. The SA is performed using GMDH type artificial neural networks (ANN) which are based on validated numerical data of two phase modeling of nanofluid flow in flat tubes. There are five design variables namely: tube flattening (H), flow ra...

Journal: :journal of heat and mass transfer research 0
mahdi mollamahdi university of kashan mahmoud abbaszadeh university of kashan ghanbar ali sheikhzadeh university of kashan

in this study, flow field and heat transfer of al2o3-cu/water micropolar hybrid nanofluid is investigated in a permeable channel using the least square method. the channel is encountered to chemical reaction, and a constant magnetic field is also applied. the bottom wall is hot and coolant fluid is injected into the channel from the top wall. the effects of different parameters such as the reyn...

2011
Kenneth D Kihm Chan Hee Chon Joon Sik Lee Stephen US Choi

An alternative insight is presented concerning heat propagation velocity scales in predicting the effective thermal conductivities of nanofluids. The widely applied Brownian particle velocities in published literature are often found too slow to describe the relatively higher nanofluid conductivities. In contrast, the present model proposes a faster heat transfer velocity at the same order as t...

Ghanbar. Ali. Sheikhzadeh Mahdi. Mollamahdi Mahmoud. Abbaszadeh

In this study, the least square method is applied to study the laminar flow, heat transfer and microrotation of MgO-Ag/water micropolar hybrid nanofluid in a permeable channel. The bottom wall is hot and coolant fluid is injected into the channel from the top wall. The base fluid in the channel is water and volume fraction of nanoparticle (50% Ag and 50% MgO by volume) is between 0 and 0.02. By...

Introduction: In the present experimental investigation, the thermal and electrical performances of a photovoltaic/thermal system equipped with a sheet-and-grooved serpentine tube collector are investigated. The water-magnetite nanofluid is used as the heat transfer fluid. The effect of nanoparticle volume concentration (0-1%), nanofluid mass flow rate (10-40 kg/h) and groove pitch (0, 0.54 an...

Abstract   This study is applied Lattice Boltzmann Method to investigate the natural convection flow utilizing nanofluids in a concentric annulus. A numerical strategy presents for dealing with curved boundaries of second order accuracy for both velocity and temperature fields. The fluid between the cylinders is a water-based nanofluid containing different types of nanoparticles: copper (Cu), a...

B. Jafarian M. Hajipour R. Khademi,

In this paper, conjugate heat transfer of magneto hydrodynamic mixed convection of nanofluid about a vertical slender hollow cylinder embedded in a porous medium with high porosity have been numerically studied. The Forchheimer’s modification of Darcy’s law was used in representing the nanofluid motion inside the porous media. The governing boundary layer equations were transformed to non-dimen...

Abbas Kasaeipoor, Mohammad Amin Kianfar Morteza Bayareh,

In this article, mixed convection heat transfer of alumina-water nanofluid in an inclined and baffled C-shape enclosure is studied. It is assumed that the flow is laminar and steady. There is no energy production, energy storage and viscous heat dissipation. Furthermore, the nanofluid is considered as a continuous, Newtonian and incompressible fluid. Governing equations are discretized by finit...

2011
Gopalan Ramesh Narayan Kotekar Prabhu

The success of quenching process during industrial heat treatment mainly depends on the heat transfer characteristics of the quenching medium. In the case of quenching, the scope for redesigning the system or operational parameters for enhancing the heat transfer is very much limited and the emphasis should be on designing quench media with enhanced heat transfer characteristics. Recent studies...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید