Let $\pi$ be a Hecke-Maass cusp form for $SL(3,\mathbb Z)$ and $f$ holomorphic (or Maass) Hecke $SL(2,\mathbb{Z})$. In this paper we prove the following subconvex bound $$ L\left(\tfrac{1}{2}+it,\pi\times f\right)\ll_{\pi,f,\varepsilon} (1+|t|)^{\frac{3}{2}-\frac{1}{42}+\varepsilon}.